Paul Geoffrey Whitehead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/716749/publications.pdf

Version: 2024-02-01

35 papers

2,542 citations

304743 22 h-index 35 g-index

38 all docs 38 docs citations

38 times ranked 3846 citing authors

#	Article	IF	CITATIONS
1	Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels. Science of the Total Environment, 2022, 816, 151638.	8.0	46
2	Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change. Water (Switzerland), 2022, 14, 829.	2.7	4
3	Impact of dams and climate change on suspended sediment flux to the Mekong delta. Science of the Total Environment, 2021, 755, 142468.	8.0	54
4	Impacts of Climate Change and Population Growth on River Nutrient Loads in a Data Scarce Region: The Upper Awash River (Ethiopia). Sustainability, 2021, 13, 1254.	3.2	16
5	A New Multibranch Model for Metals in River Systems: Impacts and Control of Tannery Wastes in Bangladesh. Sustainability, 2021, 13, 3556.	3.2	5
6	A New, Catchment-Scale Integrated Water Quality Model of Phosphorus, Dissolved Oxygen, Biochemical Oxygen Demand and Phytoplankton: INCA-Phosphorus Ecology (PEco). Water (Switzerland), 2021, 13, 723.	2.7	13
7	Modelling Microplastics in the River Thames: Sources, Sinks and Policy Implications. Water (Switzerland), 2021, 13, 861.	2.7	29
8	Impacts of droughts on low flows and water quality near power stations. Hydrological Sciences Journal, 2020, 65, 898-913.	2.6	6
9	Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care) Tj ETQq1 1 0.73 Basin, India. Science of the Total Environment, 2019, 646, 1459-1467.	/84314 rgB 8.0	BT /Overlo <mark>ck</mark> 328
10	Modeling impacts of climate and land use change on streamflow, nitrate, and ammonium in the Kor River, southwest of Iran. Journal of Water and Climate Change, 2019, 10, 818-834.	2.9	5
11	Assessment of Risks to Public Water Supply From Low Flows and Harmful Water Quality in a Changing Climate. Water Resources Research, 2019, 55, 10386-10404.	4.2	25
12	Flows and sediment dynamics in the Ganga River under present and future climate scenarios. Hydrological Sciences Journal, 2018, 63, 763-782.	2.6	38
13	Modelling the effects of climate and land-use change on the hydrochemistry and ecology of the River Wye (Wales). Science of the Total Environment, 2018, 627, 733-743.	8.0	17
14	Modelling impacts of climate change and socio-economic change on the Ganga, Brahmaputra, Meghna, Hooghly and Mahanadi river systems in India and Bangladesh. Science of the Total Environment, 2018, 636, 1362-1372.	8.0	56
15	Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model. Science of the Total Environment, 2018, 631-632, 201-215.	8.0	29
16	Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies. Science of the Total Environment, 2018, 631-632, 223-232.	8.0	42
17	Professor W Mike Edmunds: a pioneer in applied hydrogeochemistry and champion of international collaboration. Hydrogeology Journal, 2018, 26, 351-356.	2.1	1
18	Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes. Science of the Total Environment, 2018, 637-638, 1069-1080.	8.0	39

#	Article	IF	Citations
19	Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India. Science of the Total Environment, 2018, 637-638, 907-917.	8.0	45
20	Dynamic response of land use and river nutrient concentration to long-term climatic changes. Science of the Total Environment, 2017, 590-591, 818-831.	8.0	40
21	Persistent Organic Pollutants in sediment and fish in the River Thames Catchment (UK). Science of the Total Environment, 2017, 576, 78-84.	8.0	33
22	Seasonal and Interannual Changes in Sediment Transport Identified through Sediment Rating Curves. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	35
23	Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). Journal of Hydrology, 2016, 542, 357-372.	5.4	103
24	Modelling flow and inorganic nitrogen dynamics on the Hampshire Avon: Linking upstream processes to downstream water quality. Science of the Total Environment, 2016, 572, 1496-1506.	8.0	10
25	A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environmental Sciences: Processes and Impacts, 2016, 18, 1050-1059.	3.5	455
26	Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of the Total Environment, 2016, 572, 1507-1519.	8.0	76
27	Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environmental Pollution, 2016, 208, 704-713.	7.5	189
28	The distribution of Polychlorinated Biphenyls (PCBs) in the River Thames Catchment under the scenarios of climate change. Science of the Total Environment, 2015, 533, 187-195.	8.0	10
29	Dynamic modelling of multiple phytoplankton groups in rivers with an application to the Thames river system in the UK. Environmental Modelling and Software, 2015, 74, 75-91.	4.5	35
30	An interdisciplinary modelling approach assessing the cost-effectiveness of agri-environmental measures on reducing nutrient concentration to WFD thresholds under climate change: the case of the Louros catchment. Operational Research, 2014, 14, 205-224.	2.0	4
31	Phosphorus dynamics across intensively monitored subcatchments in the Beaver River. Inland Waters, 2013, 3, 187-206.	2.2	20
32	Modelling the impacts of climate change on flow and nitrate in the River Thames: assessing potential adaptation strategies. Hydrology Research, 2012, 43, 902-916.	2.7	34
33	Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water. Water Resources Research, $2011,47,\ldots$	4.2	634
34	An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries. Science of the Total Environment, 2010, 408, 2555-2566.	8.0	61
35	Green infrastructure and climate change impacts on the flows and water quality of urban catchments: Salmons Brook and Pymmes Brook in north-east London. Hydrology Research, 0, , .	2.7	2