## Masataka Yoshino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/716661/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Interaction of Iron with Polyphenolic Compounds: Application to Antioxidant Characterization.<br>Analytical Biochemistry, 1998, 257, 40-44.                                                                                         | 2.4 | 251       |
| 2  | Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation.<br>Food and Chemical Toxicology, 2005, 43, 461-466.                                                                             | 3.6 | 146       |
| 3  | Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA<br>and induction of apoptotic cell death. Toxicology in Vitro, 2004, 18, 783-789.                                                 | 2.4 | 131       |
| 4  | Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radical Research, 2005, 39, 995-1003.                                                                                  | 3.3 | 110       |
| 5  | Prooxidant Activity of Flavonoids: Copper-Dependent Strand Breaks and the Formation of<br>8-Hydroxy-2′-Deoxyguanosine in DNA. Molecular Genetics and Metabolism, 1999, 68, 468-472.                                                 | 1.1 | 83        |
| 6  | Permeabilization of yeast cells: Application to study on the regulation of AMP deaminase activity in situ. Analytical Biochemistry, 1980, 105, 407-413.                                                                             | 2.4 | 57        |
| 7  | Inhibitory action of eugenol compounds on the production of nitric oxide in RAW264.7 macrophages.<br>Biomedical Research, 2006, 27, 69-74.                                                                                          | 0.9 | 50        |
| 8  | Analysis of the substrate inhibition of complete and partial types. SpringerPlus, 2015, 4, 292.                                                                                                                                     | 1.2 | 47        |
| 9  | Prooxidant action of aluminum ion-stimulation of iron-mediated lipid peroxidation by aluminum.<br>BioMetals, 1999, 12, 237-240.                                                                                                     | 4.1 | 44        |
| 10 | Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria. Journal of Cellular Biochemistry, 2004, 93, 1267-1271.                                                          | 2.6 | 43        |
| 11 | A graphical method for determining inhibition constants. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1288-1290.                                                                                                 | 5.2 | 42        |
| 12 | Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli. Research in<br>Microbiology, 2007, 158, 159-163.                                                                                                | 2.1 | 37        |
| 13 | Dipicolinic acid prevents the copper-dependent oxidation of low density lipoprotein. Journal of<br>Nutritional Biochemistry, 2003, 14, 99-103.                                                                                      | 4.2 | 36        |
| 14 | Prooxidant action of rosmarinic acid: Transition metal-dependent generation of reactive oxygen species. Toxicology in Vitro, 2007, 21, 613-617.                                                                                     | 2.4 | 33        |
| 15 | Effect of hydroxy substituent on the prooxidant action of naphthoquinone compounds. Toxicology in<br>Vitro, 2010, 24, 905-909.                                                                                                      | 2.4 | 33        |
| 16 | Prooxidant action of xanthurenic acid and quinoline compounds: Role of transition metals in the generation of reactive oxygen species and enhanced formation of 8-hydroxy-2′-deoxyguanosine in DNAâ€. BioMetals, 2006, 19, 429-435. | 4.1 | 32        |
| 17 | Aluminum-induced apoptosis in PC12D cells. BioMetals, 2001, 14, 181-185.                                                                                                                                                            | 4.1 | 26        |
| 18 | Maltol/iron-mediated apoptosis in HL60 cells: Participation of reactive oxygen species. Toxicology Letters, 2006, 161, 102-107.                                                                                                     | 0.8 | 25        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase. Archives of Microbiology, 2006, 186, 385-392.             | 2.2 | 25        |
| 20 | Xanthurenic Acid Inhibits Metal Ion-Induced Lipid Peroxidation and Protects NADP-Isocitrate<br>Dehydrogenase from Oxidative Inactivation Journal of Nutritional Science and Vitaminology, 2001, 47,<br>306-310.      | 0.6 | 24        |
| 21 | Inactivation of aconitase in yeast exposed to oxidative stress. IUBMB Life, 1997, 41, 481-486.                                                                                                                       | 3.4 | 23        |
| 22 | Prooxidant Action of Maltol: Role of Transition Metals in the Generation of Reactive Oxygen Species<br>and Enhanced Formation of 8-hydroxy-2′-deoxyguanosine Formation in DNA. BioMetals, 2006, 19, 253-257.         | 4.1 | 23        |
| 23 | Antioxidant Effect of Capsaicinoids on the Metal-catalyzed Lipid Peroxidation. Biomedical Research, 2001, 22, 15-17.                                                                                                 | 0.9 | 22        |
| 24 | Prooxidant Action of Hinokitiol: Hinokitiol-Iron Dependent Generation of Reactive Oxygen Species.<br>Basic and Clinical Pharmacology and Toxicology, 2005, 97, 392-394.                                              | 2.5 | 18        |
| 25 | Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase. BioMetals, 2014, 27, 551-558.                                                                          | 4.1 | 18        |
| 26 | Generation of Reactive Oxygen Species and Induction of Apoptosis of HL60 Cells by Ingredients of<br>Traditional Herbal Medicine, Sho-saiko-to. Basic and Clinical Pharmacology and Toxicology, 2006, 98,<br>401-405. | 2.5 | 17        |
| 27 | Mimosine-Induced Apoptosis in C6 Glioma Cells Requires the Release of Mitochondria-Derived Reactive Oxygen Species and p38, JNK Activation. Neurochemical Research, 2012, 37, 417-427.                               | 3.3 | 14        |
| 28 | ANTIOXIDANT EFFECT OF DIPICOLINIC ACID ON THE METAL-CATALYZED LIPID PEROXIDATION AND ENZYME INACTIVATION. Biomedical Research, 1998, 19, 205-208.                                                                    | 0.9 | 14        |
| 29 | Role of metal cations in the regulation of NADP-linked isocitrate dehydrogenase from porcine heart.<br>BioMetals, 1997, 10, 169-174.                                                                                 | 4.1 | 12        |
| 30 | <b>ROLE OF BAICALEIN COMPOUNDS AS ANTIOXIDANT IN THE TRADITIONAL HERBAL MEDICINE </b> .<br>Biomedical Research, 1997, 18, 349-352.                                                                                   | 0.9 | 12        |
| 31 | Dipicolinic Acid as an Antioxidant: Protection of Glutathione Reductase from the Inactivation by Copper. Biomedical Research, 1999, 20, 321-326.                                                                     | 0.9 | 11        |
| 32 | Activation by spermine of citrate synthase from porcine heart. Biochimica Et Biophysica Acta - General<br>Subjects, 1991, 1073, 200-202.                                                                             | 2.4 | 10        |
| 33 | Aluminum: a pH-dependent inhibitor of NADP-isocitrate dehydrogenase from porcine heart. BioMetals, 1992, 5, 217-221.                                                                                                 | 4.1 | 10        |
| 34 | Antioxidant and Prooxidant Actions of Gallic Acid Derivatives: Effect on Metal-dependent Oxidation of Lipids and Low Density Lipoprotein. Biomedical Research, 2000, 21, 291-296.                                    | 0.9 | 10        |
| 35 | Induction of Apoptosis of HL60 Cells by Gallic Acid Derivatives. Biomedical Research, 2002, 23, 127-134.                                                                                                             | 0.9 | 10        |
| 36 | Regulatory role ofÂpolyamine inÂtheÂacid phosphatase from potato tubers. Plant Physiology and<br>Biochemistry, 2006, 44, 43-48.                                                                                      | 5.8 | 8         |

Masataka Yoshino

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Protection by histadine against oxidative inactivation of AMP deaminase in yeast. IUBMB Life, 1997, 42, 1063-1069.                                                                                                          | 3.4 | 7         |
| 38 | Title is missing!. BioMetals, 1998, 11, 63-67.                                                                                                                                                                              | 4.1 | 7         |
| 39 | Zinc inhibition of pyruvate kinase of M-type isozyme. BioMetals, 2017, 30, 335-340.                                                                                                                                         | 4.1 | 7         |
| 40 | AMP Nucleosidase from Azotobacter vinelandii. Journal of Biochemistry, 1972, 72, 223-233.                                                                                                                                   | 1.7 | 6         |
| 41 | Maltol as an Antioxidant: Inhibition of Lipid Peroxidation and Protection of NADP- Isocitrate<br>Dehydrogenase from the Iron-mediated Inactivation. Biomedical Research, 2001, 22, 183-186.                                 | 0.9 | 6         |
| 42 | Inhibition by fructose 1,6-bisphosphate of transaldolase from <i>Escherichia coli</i> . FEMS<br>Microbiology Letters, 2016, 363, fnw183.                                                                                    | 1.8 | 5         |
| 43 | Generation of reactive oxygen species by hydroxypyridone compound/iron complexes. Redox Report, 2020, 25, 59-63.                                                                                                            | 4.5 | 5         |
| 44 | Prooxidant action of rhodizonic acid: Transition metal-dependent generation of reactive oxygen<br>species causing the formation of 8-hydroxy-2′-deoxyguanosine formation in DNA. Toxicology in Vitro,<br>2006, 20, 910-914. | 2.4 | 4         |
| 45 | Iron-Dependent Oxidative Inactivation with Affinity Cleavage of Pyruvate Kinase. Biological Trace<br>Element Research, 2009, 130, 31-38.                                                                                    | 3.5 | 4         |
| 46 | Effect of fructose 1,6-bisphosphate on the iron redox state relating to the generation of reactive oxygen species. BioMetals, 2015, 28, 687-691.                                                                            | 4.1 | 4         |
| 47 | <b>REVERSAL BY POLYAMINE OF THE ALUMINUM-INDUCED INHIBITION OF HEXOKINASE FROM HUMAN<br/>BRAIN </b> . Biomedical Research, 1990, 11, 215-218.                                                                               | 0.9 | 4         |
| 48 | Prooxidant activity of aminophenol compounds: copper-dependent generation of reactive oxygen species. BioMetals, 2022, 35, 329-334.                                                                                         | 4.1 | 3         |
| 49 | Differential effects of polyamine on the cytosolic and mitochondrial NADPâ€isocitrate dehydrogenases.<br>BioFactors, 2012, 38, 365-371.                                                                                     | 5.4 | 2         |
| 50 | Polyamine enhances the regeneration of reduced glutathione by the activation of NADP-dependent dehydrogenases in yeast. Biomedical Research, 2004, 25, 69-74.                                                               | 0.9 | 1         |
| 51 | Glycogenolysis: Is muscle glycogen phosphorylase differentially activated depending on the conditions of hypoxia and exercise?. Medical Hypotheses, 2014, 83, 513.                                                          | 1.5 | 0         |
| 52 | <b>Hypoxia-induced decrease in brain serotonin is dependent on the increase in<br/>tryptophan </b> . Biomedical Research, 1996, 17, 399-402.                                                                                | 0.9 | 0         |
| 53 | <b>Parathyroidectomy-induced decrease in calcium-binding protein (calbinin D<sub>28K</sub>) in the rat kiny </b> . Biomedical Research, 1996, 17, 495-497.                                                                  | 0.9 | 0         |