
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
6	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
7	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
8	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
12	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
13	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
14	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
15	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
16	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
17	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
18	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956

ARTICLE IF CITATIONS Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, . 2.8 898 GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mtext> </mml:mtext><mml:mtext> </mml:mtext>a€‰</mml:mtext> 20 stretchy="false">⊙</mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math>. Physical Review Letters, 2020, 125, 101102. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced 8.2 808 Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3. Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, . 22 2.8 728 A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88. 13.7 674 24 Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102. 2.9 673 Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum 1.5 644 Gravity, 2011, 28, 094013. ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal 26 3.0 633 Letters, 2016, 818, L22. Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of 3.0 566 Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24. Population Properties of Compact Objects from the Second LIGOâ€"Virgo Gravitational-Wave Transient 28 3.0 514 Catalog. Astrophysical Journal Letters, 2021, 913, L7. Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. 1.6 470 Physical Review D, 2019, 100, . GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 30 2.9 466 116, 131103. Observation of Gravitational Waves from Two Neutron Starâ€"Black Hole Coalescences. Astrophysical 453 Journal Letters, 2021, 915, L5. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced 32 8.2 447 Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and 8.2 427 Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1. Properties and Astrophysical Implications of the 150 M_⊙ Binary Black Hole Merger 34 3.0 406 GW190521. Astrophysical Journal Letters, 2020, 900, L13. GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 1.6 394 2020, 102, . 36 Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102. 2.9 370

ROSA POGGIANI

#	Article	IF	CITATIONS
37	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
38	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338
39	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
40	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
41	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	1.5	287
42	Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX, 2021, 13, 100658.	1.2	275
43	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
44	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
45	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
46	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
47	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
48	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
49	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
50	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
51	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	1.6	192
52	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
53	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
54	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185

#	Article	IF	CITATIONS
55	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	1.5	179
56	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
57	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
58	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
59	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
60	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
61	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	1.5	148
62	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
63	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
64	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
65	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
66	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
67	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
68	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
69	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
70	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
71	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
72	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111

#	Article	IF	CITATIONS
73	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
74	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
75	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
76	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
77	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
78	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
79	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
80	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
81	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
82	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
83	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
84	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
85	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
86	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
87	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
88	Measurement of the VIRGO superattenuator performance for seismic noise suppression. Review of Scientific Instruments, 2001, 72, 3643-3652.	0.6	89
89	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	1.5	89
90	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89

#	Article	IF	CITATIONS
91	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
92	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
93	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	2.9	87
94	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
95	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	1.5	85
96	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
97	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
98	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
99	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
100	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
101	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	1.5	83
102	An inverted pendulum preisolator stage for the VIRGO suspension system. Review of Scientific Instruments, 1999, 70, 2507-2515.	0.6	82
103	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	1.9	79
104	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
105	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
106	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
107	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
108	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, 140.	3.0	73

#	Article	IF	CITATIONS
109	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
110	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
111	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
112	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
113	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69
114	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
115	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
116	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
117	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
118	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
119	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
120	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
121	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
122	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
123	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
124	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	1.6	62
125	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
126	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60

#	Article	IF	CITATIONS
127	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
128	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
129	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
130	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60
131	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
132	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
133	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
134	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	1.5	56
135	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
136	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	1.5	54
137	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
138	Inertial control of the mirror suspensions of the VIRGO interferometer for gravitational wave detection. Review of Scientific Instruments, 2001, 72, 3653-3661.	0.6	52
139	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
140	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
141	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
142	The VIRGO interferometer for gravitational wave detection. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 167-175.	0.5	50
143	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
144	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47

#	Article	lF	CITATIONS
145	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
146	Extending the VIRGO gravitational wave detection band down to a few Hz: metal blade springs and magnetic antisprings. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 394, 397-408.	0.7	46
147	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
148	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
149	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	1.6	46
150	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
151	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
152	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	1.6	43
153	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
154	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	1.6	42
155	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	0.784314 1.5	4 rggT /Overic
156	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
157	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
158	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	1.6	39
159	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
160	The creep problem in the VIRGO suspensions: a possible solution using Maraging steel. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 404, 455-469.	0.7	36
161	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters. 2019. 122. 061104.</mml:math 	2.9	36
162	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35

#	Article	IF	CITATIONS
163	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
164	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	2.9	35
165	Seismic vibrations mechanical filters for the gravitational waves detector VIRGO. Review of Scientific Instruments, 1996, 67, 2899-2902.	0.6	34
166	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
167	Air bake-out to reduce hydrogen outgassing from stainless steel. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 188-193.	0.9	32
168	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
169	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters. 2014. 113. 011102.</mml:math 	2.9	32
170	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
171	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
172	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	3.0	32
173	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
174	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
175	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
176	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	1.5	30
177	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
178	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
179	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
180	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29

#	Article	IF	CITATIONS
181	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
182	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
183	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
184	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
185	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
186	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
187	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
188	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
189	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	1.5	25
190	Antihydrogen production and precision experiments. Nuclear Physics, Section B, Proceedings Supplements, 1997, 56, 336-348.	0.5	23
191	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	1.9	22
192	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	1.9	22
193	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	1.5	22
194	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	22
195	Low noise wideband accelerometer using an inductive displacement sensor. Review of Scientific Instruments, 1995, 66, 2672-2676.	0.6	21
196	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.3	21
197	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
198	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	1.6	20

#	Article	IF	CITATIONS
199	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
200	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	1.9	19
201	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	1.5	19
202	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
203	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	19
204	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
205	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
206	Chandra High Energy Transmission Gratings Spectra of V3890 Sgr. Astrophysical Journal, 2020, 895, 80.	1.6	17
207	Status of the VIRGO experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 360, 258-262.	0.7	16
208	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	1.5	16
209	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
210	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
211	Ground tilt seismic spectrum measured with a new high sensitivity rotational accelerometer. Review of Scientific Instruments, 1997, 68, 1889-1893.	0.6	15
212	The early spectroscopic evolution of nova V458 Vul (Nova Vulpeculae 2007). Astrophysics and Space Science, 2008, 315, 79-85.	0.5	15
213	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.3	15
214	Measurement of the transfer function of the steering filter of the Virgo super attenuator suspension. Review of Scientific Instruments, 2001, 72, 3635-3642.	0.6	14
215	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	0.6	14
216	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14

#	Article	IF	CITATIONS
217	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
218	A possible gravity measurement with antihydrogen. Hyperfine Interactions, 1993, 76, 371-377.	0.2	13
219	Performances of an ultralow frequency vertical pre-isolator for the VIRGO seismic attenuation chains. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 420, 316-335.	0.7	13
220	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	1.5	13
221	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	1.5	13
222	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
223	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
224	First joint gravitational wave search by the AURICA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
225	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
226	Antihydrogen production and precision experiments. The ATHENA collaboration. , 1997, 109, 1-32.		12
227	Spectral evolution of nova V5558 Sgr (nova Sgr 2007): Pre-maximum and early decline stages. New Astronomy, 2008, 13, 557-562.	0.8	12
228	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
229	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
230	Antihydrogen production in a combined trap. Hyperfine Interactions, 1993, 76, 343-345.	0.2	11
231	Plane parallel mirrors Fabry-Perot cavity to improve Virgo superattenuators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 243, 187-194.	0.9	11
232	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
233	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
234	Adiabatic cooling of ions in the penning trap. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 22, 375-382.	1.0	10

#	Article	IF	CITATIONS
235	The Virgo Detector. AIP Conference Proceedings, 2005, , .	0.3	10
236	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	1.5	10
237	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
238	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	1.9	10
239	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
240	Status of VIRGO. Classical and Quantum Gravity, 2003, 20, S609-S616.	1.5	9
241	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	1.5	9
242	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	1.5	9
243	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
244	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
245	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
246	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
247	Laser with an in-loop relative frequency stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mn>1.0 </mml:mn> <mml:mo>× </mml:mo> <mml:msup> <mml:mrow> <mn a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79</mn </mml:mrow></mml:msup></mml:mrow></mml:math 	nl:mn>10	<
248	The spectroscopic evolution of V2467 Cyg (Nova Cygni 2007) in the first months after the outburst. Astronomische Nachrichten, 2009, 330, 77-83.	0.6	8
249	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
250	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
251	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
252	Status of the VIRGO experiment. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 107-109.	0.5	7

#	Article	IF	CITATIONS
253	Mechanical filters for the gravitational waves detector VIRGO: Performance of a two-stage suspension. Review of Scientific Instruments, 1997, 68, 3904-3906.	0.6	7
254	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	1.5	7
255	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	1.5	7
256	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	1.5	7
257	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	2.0	7
258	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	1.2	7
259	High-bandwidth beam balance for vacuum-weight experiment and Newtonian noise subtraction. European Physical Journal Plus, 2021, 136, 1.	1.2	7
260	Characterization of multi-pixel HPD tubes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 387, 113-116.	0.7	6
261	Status report of the low frequency facility experiment, Virgo R&D. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 199-204.	0.9	6
262	The low frequency facility Fabry–Perot cavity used as a speed-meter. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 316, 1-9.	0.9	6
263	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	1.5	6
264	The evolution of nova V5558 Sgr during the decline stage. New Astronomy, 2010, 15, 657-661.	0.8	6
265	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
266	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
267	Measurement of the gravitational acceleration of antihydrogen. , 1997, 109, 367-372.		5
268	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	1.5	5
269	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	1.5	5
270	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	1.5	5

#	Article	IF	CITATIONS
271	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	2.4	5
272	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	1.2	5
273	The status of virgo. Journal of Physics: Conference Series, 2008, 110, 062025.	0.3	5
274	The spectroscopic evolution of V2362 Cyg (Nova Cygni 2006) in the first 15 months after the outburst. New Astronomy, 2009, 14, 4-10.	0.8	5
275	The spectroscopic evolution of V459 Vul (Nova Vul 2007 #2). New Astronomy, 2010, 15, 170-174.	0.8	5
276	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
277	First results of the low frequency facility experiment. Classical and Quantum Gravity, 2004, 21, S1099-S1106.	1.5	4
278	Lock acquisition of the central interferometer of the gravitational wave detector Virgo. Astroparticle Physics, 2004, 21, 465-477.	1.9	4
279	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	1.5	4
280	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.3	4
281	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	1.5	4
282	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 Å— 10â^21 on a 100 ms time scale. , 2009, , .		4
283	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
284	High Energy Astrophysical Techniques. UNITEXT for Physics, 2017, , .	0.1	4
285	Optical, Infrared and Radio Astronomy. UNITEXT for Physics, 2017, , .	0.1	4
286	Adiabatic cooling of antiprotons in a Penning trap. Hyperfine Interactions, 1993, 76, 281-284.	0.2	3
287	Status of the low frequency facility experiment. Classical and Quantum Gravity, 2002, 19, 1675-1682.	1.5	3
288	Status of Virgo. Journal of Physics: Conference Series, 2006, 39, 32-35.	0.3	3

#	Article	IF	CITATIONS
289	An analysis of early spectroscopic observations and the light curve of the nova V1663 Aql (Nova Aql) Tj ETQq1 1).784314 0.6	rgßT /Over
290	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	1.5	3
291	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
292	Launching of Antiprotons from the Catching Penning Trap by Evaporation Method. Communications in Theoretical Physics, 1993, 19, 1-12.	1.1	2
293	Improvements at low frequency in the interferometric test of the suspensions of the Virgo gravitational wave antenna. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 184, 179-183.	0.9	2
294	Deceleration of MeV antiprotons and muons to keV energies — the anticyclotron A progress report. Nuclear Instruments & Methods in Physics Research B, 1994, 85, 736-740.	0.6	2
295	Improvements on the test mass suspensions of the VIRGO laser interferometer gravitational wave detector. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 199, 307-314.	0.9	2
296	Status of VIRGO. , 2004, 5500, 58.		2
297	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.3	2
298	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	1.5	2
299	Search for Rapid Optical Variability in Three Gamma-Ray Loud Blazars. Astrophysics and Space Science, 2006, 306, 17-22.	0.5	2
300	The spectroscopic evolution of V5584 Sgr (Nova Sgr 2009 No. 4). Astrophysics and Space Science, 2011, 333, 115-118.	0.5	2
301	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
302	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
303	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
304	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
305	Beam parameters and characterization technique. Nuclear Instruments & Methods in Physics Research B, 1994, 85, 716-721.	0.6	1
306	Displacement measurement in VIRGO super attenuators with a suspended fabry-perot interferometer. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 179-183.	0.5	1

#	Article	IF	CITATIONS
307	Status and noise limit of the VIRGO antenna. , 1998, , .		1
308	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	1.5	1
309	Concept of High Speed Astronomical Instrumentation Based on Visible Light Photon Counters. Experimental Astronomy, 2004, 18, 109-132.	1.6	1
310	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
311	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
312	The early spectroscopy of V2670 Oph (Nova Oph 2008). Astrophysics and Space Science, 2009, 323, 319-322.	0.5	1
313	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
314	Spectroscopic observations of the transient OT J213806.6+261957 in Pegasus. New Astronomy, 2013, 19, 62-66.	0.8	1
315	Status of the Advanced Virgo Gravitational Wave Detector. , 2018, , .		1
316	Galactic and Extragalactic Novae $\hat{a} \in \hat{~}$ A Multiwavelenght Review. , 2021, , .		1
317	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
318	FIRST COINCIDENCE SEARCH AMONG PERIODIC GRAVITATIONAL WAVE SOURCE CANDIDATES USING VIRGO DATA. , 2008, , .		1
319	Galactic and Extragalactic Novae - A Review. , 2019, , .		1
320	Gravitational Wave Detectors. , 2003, , 49-65.		1
321	PLANS FOR THE UPGRADE OF THE GRAVITATIONAL WAVE DETECTOR VIRGO: ADVANCED VIRGO. , 2012, , .		1
322	Gamma Ray Astronomy. UNITEXT for Physics, 2017, , 91-104.	0.1	1
323	Multi-messenger Observations of a Binary Neutron Star Merger. , 2019, , .		1
324	Resistance of Si:P samples in the temperature range 0.4–5.0 K. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 289, 532-533.	0.7	0

#	Article	IF	CITATIONS
325	Test of an interferometric sapphire transducer with the super attenuator of the VIRGO gravitational wave antenna. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 189, 141-144.	0.9	Ο
326	Antihydrogen formation in combined traps. Hyperfine Interactions, 1996, 100, 125-131.	0.2	0
327	Measurement of the gravitational acceleration of fullerene molecules. Classical and Quantum Gravity, 2003, 20, 567-573.	1.5	0
328	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.3	0
329	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	1.5	Ο
330	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		0
331	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	Ο
332	Interplanetary dust: a source of noise for LISA?. Classical and Quantum Gravity, 2009, 26, 225012.	1.5	0
333	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
334	PROGRESSES IN THE REALIZATION OF A MONOLITHIC SUSPENSION SYSTEM IN VIRGO. , 2012, , .		0
335	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	Ο
336	The Nova V5584 Sgr: A Short Review. Acta Polytechnica CTU Proceedings, 2015, 2, 234-237.	0.3	0
337	Early spectroscopic observations of four extragalactic novae. New Astronomy, 2015, 37, 9-14.	0.8	0
338	Radio and Submillimeter Astronomy: Receivers and Spectrometers. UNITEXT for Physics, 2017, , 129-136.	0.1	0
339	Detectors Based on Ionization in Solid State Materials. UNITEXT for Physics, 2017, , 59-63.	0.1	Ο
340	Gravitational wave astronomy with compact binary mergers. , 2021, , .		0
341	Cataclysmic variables as multimessenger sources: the gravitational wave emission. , 2021, , .		Ο
342	STATUS OF THE VIRGO EXPERIMENT. , 2004, , .		0

#	Article	IF	CITATIONS
343	VIRGO DATA ANALYSIS FOR C6 AND C7 ENGINEERING RUNS. , 2008, , .		0
344	VIRGO COMMISSIONING PROGRESS. , 2008, , .		0
345	THE STATUS OF THE VIRGO GRAVITATIONAL WAVE DETECTOR. , 2008, , .		0
346	NOISE ANALYSIS IN VIRGO: ON-LINE AND OFFLINE TOOLS FOR NOISE CHARACTERIZATION. , 2012, , .		0
347	ADVANCED VIRGO INTERFEROMETER: A SECOND GENERATION DETECTOR FOR GRAVITATIONAL WAVES OBSERVATION. , 2015, , .		0
348	A systematic search for periodicities of X-ray binaries in the Swift BAT data. , 2015, , .		0
349	Optical Photometry. UNITEXT for Physics, 2017, , 75-89.	0.1	0
350	Radio and Submillimeter Astronomy: Radio Telescopes. UNITEXT for Physics, 2017, , 119-128.	0.1	0
351	Setting the Scene: High Energy Photons and Particles. UNITEXT for Physics, 2017, , 3-12.	0.1	0
352	Neutrino Astronomy. UNITEXT for Physics, 2017, , 115-121.	0.1	0
353	Ultraviolet and X-Ray Astronomy. UNITEXT for Physics, 2017, , 81-89.	0.1	0
354	Infrared Astronomy. UNITEXT for Physics, 2017, , 109-118.	0.1	0
355	Observing in High Energy Astrophysics. UNITEXT for Physics, 2017, , 147-157.	0.1	0
356	Interferometers. UNITEXT for Physics, 2017, , 147-151.	0.1	0
357	Detectors: General Characteristics. UNITEXT for Physics, 2017, , 39-42.	0.1	0
358	Telescopes: Ground Based or in Space?. UNITEXT for Physics, 2017, , 45-63.	0.1	0
359	Radiation-Matter Interactions. UNITEXT for Physics, 2017, , 13-26.	0.1	0
360	Scintillation Detector Systems. UNITEXT for Physics, 2017, , 51-58.	0.1	0

#	Article	IF	CITATIONS
361	The transient OT J213806.6+261957 in Pegasus - Possible emitter of gravitational waves. , 2017, , .		0
362	The importance of transient X-ray sources for gravitational wave physics. , 2017, , .		0
363	Advanced Virgo Status. , 2017, , .		0
364	Multifrequency Behaviour of Galactic and Extragalactic Novae. , 2018, , .		0
365	Galactic and extragalactic novae - A Review. , 2018, , .		0
366	Cataclysmic variables as gravitational wave sources. , 2018, , .		0
367	Pre-maximum and maximum of Novae: The spectroscopic observations of Nova ASASSN-17hx. , 2018, , .		0
368	Galactic and Extragalactic Novae â \in " An Updated Review. , 2018, , .		0
369	Gravitational Waves from Accreting Sources. , 2020, , .		0
370	Multi-messenger Observations of a Binary Neutron Star Merger. , 2020, , .		0
371	High Energy Astrophysical Techniques. , 2020, , .		0
372	Gravitational waves from accreting systems. , 2020, , .		0