Creg J Workman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7164371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interferon-Î ³ : teammate or opponent in the tumour microenvironment?. Nature Reviews Immunology, 2022, 22, 158-172.	22.7	227
2	LAG3 associates with TCR–CD3 complexes and suppresses signaling by driving co-receptor–Lck dissociation. Nature Immunology, 2022, 23, 757-767.	14.5	53
3	Molecular Pathways and Mechanisms of LAG3 in Cancer Therapy. Clinical Cancer Research, 2022, 28, 5030-5039.	7.0	39
4	Systemic Immune Dysfunction in Cancer Patients Driven by IL6 Induction of LAG3 in Peripheral CD8+ T Cells. Cancer Immunology Research, 2022, 10, 885-899.	3.4	7
5	Autoreactive CD8+ T cells are restrained by an exhaustion-like program that is maintained by LAG3. Nature Immunology, 2022, 23, 868-877.	14.5	32
6	Competition for Active TGFÎ ² Cytokine Allows for Selective Retention of Antigen-Specific Tissue- Resident Memory T Cells in the Epidermal Niche. Immunity, 2021, 54, 84-98.e5.	14.3	68
7	Regulatory T Cell–Derived TRAIL Is Not Required for Peripheral Tolerance. ImmunoHorizons, 2021, 5, 48-58.	1.8	3
8	The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse. Science Signaling, 2021, 14, .	3.6	22
9	Regulatory T Cells: Barriers of Immune Infiltration Into the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 702726.	4.8	67
10	A Cre-driven allele-conditioning line to interrogate CD4+ conventional TÂcells. Immunity, 2021, 54, 2209-2217.e6.	14.3	8
11	Intractable Coronavirus Disease 2019 (COVID-19) and Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Replication in a Chimeric Antigen Receptor-Modified T-Cell Therapy Recipient: A Case Study. Clinical Infectious Diseases, 2021, 73, e815-e821.	5.8	113
12	Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. Journal of Interferon and Cytokine Research, 2021, 41, 391-406.	1.2	30
13	People critically ill with COVID-19 exhibit peripheral immune profiles predictive of mortality and reflective of SARS-CoV-2 lung viral burden. Cell Reports Medicine, 2021, 2, 100476.	6.5	11
14	Neuropilin-1 is a T cell memory checkpoint limiting long-term antitumor immunity. Nature Immunology, 2020, 21, 1010-1021.	14.5	85
15	Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding. Science Immunology, 2020, 5, .	11.9	36
16	Neuropilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy. , 2020, 8, e000967.		67
17	Treg-Cell-Derived IL-35-Coated Extracellular Vesicles Promote Infectious Tolerance. Cell Reports, 2020, 30, 1039-1051.e5.	6.4	93
18	Regulatory T Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1273, 105-134.	1.6	14

Creg J Workman

#	Article	IF	CITATIONS
19	Treg Cells Promote the SREBP1-Dependent Metabolic Fitness of Tumor-Promoting Macrophages via Repression of CD8+ T Cell-Derived Interferon-γ. Immunity, 2019, 51, 381-397.e6.	14.3	186
20	Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Seminars in Immunology, 2019, 42, 101305.	5.6	189
21	Intratumoral regulatory T cells: markers, subsets and their impact on antiâ€ŧumor immunity. Immunology, 2019, 157, 232-247.	4.4	79
22	Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nature Immunology, 2019, 20, 724-735.	14.5	297
23	Interferon-Î ³ Drives Treg Fragility to Promote Anti-tumor Immunity. Cell, 2017, 169, 1130-1141.e11.	28.9	431
24	LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Science Immunology, 2017, 2, .	11.9	107
25	Localized Multiâ€Component Delivery Platform Generates Local and Systemic Antiâ€Tumor Immunity. Advanced Functional Materials, 2017, 27, 1604366.	14.9	40
26	Kinetics of Alloantigen-Specific Regulatory CD4 T Cell Development and Tissue Distribution After Donor-Specific Transfusion and Costimulatory Blockade. Transplantation Direct, 2016, 2, e73.	1.6	9
27	Targeting regulatory T cells in tumors. FEBS Journal, 2016, 283, 2731-2748.	4.7	179
28	Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science, 2016, 353, .	12.6	521
29	Interleukin-35 Limits Anti-Tumor Immunity. Immunity, 2016, 44, 316-329.	14.3	230
30	Identification of the Docking Site for CD3 on the T Cell Receptor Î ² Chain by Solution NMR. Journal of Biological Chemistry, 2015, 290, 19796-19805.	3.4	36
31	Lymphocyte Activation Gene-3 (LAG-3) Negatively Regulates Environmentally-Induced Autoimmunity. PLoS ONE, 2014, 9, e104484.	2.5	36
32	Stability and function of regulatory T cells is maintained by a neuropilin-1–semaphorin-4a axis. Nature, 2013, 501, 252-256.	27.8	489
33	Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape. Cancer Research, 2012, 72, 917-927.	0.9	1,311
34	In Vivo Treg Suppression Assays. Methods in Molecular Biology, 2011, 707, 119-156.	0.9	21
35	Differential subcellular localization of the regulatory Tâ€cell protein LAGâ€3 and the coreceptor CD4. European Journal of Immunology, 2010, 40, 1768-1777.	2.9	68
36	LAG-3 Regulates Plasmacytoid Dendritic Cell Homeostasis. Journal of Immunology, 2009, 182, 1885-1891.	0.8	311

Creg J Workman

#	Article	IF	CITATIONS
37	The development and function of regulatory T cells. Cellular and Molecular Life Sciences, 2009, 66, 2603-2622.	5.4	247
38	Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunology, 2009, 10, 29-37.	14.5	1,754
39	How regulatory T cells work. Nature Reviews Immunology, 2008, 8, 523-532.	22.7	2,638
40	LAGâ€3 (Lymphocyte Activation Geneâ€3) Negatively Regulates Environmentallyâ€Induced Autoimmune Disease. FASEB Journal, 2008, 22, 669.3.	0.5	0
41	Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO Journal, 2007, 26, 494-504.	7.8	203
42	Negative Regulation of T Cell Homeostasis by Lymphocyte Activation Gene-3 (CD223). Journal of Immunology, 2005, 174, 688-695.	0.8	272
43	Biochemical Analysis of the Regulatory T Cell Protein Lymphocyte Activation Gene-3 (LAG-3; CD223). Journal of Immunology, 2004, 173, 6806-6812.	0.8	98
44	Lymphocyte Activation Gene-3 (CD223) Regulates the Size of the Expanding T Cell Population Following Antigen Activation In Vivo. Journal of Immunology, 2004, 172, 5450-5455.	0.8	278
45	Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide–based retroviral vector. Nature Biotechnology, 2004, 22, 589-594.	17.5	1,051
46	Role of LAC-3 in Regulatory T Cells. Immunity, 2004, 21, 503-513.	14.3	1,040
47	The CD4-related molecule, LAC-3 (CD223), regulates the expansion of activated T cells. European Journal of Immunology, 2003, 33, 970-979.	2.9	262
48	Cutting Edge: Molecular Analysis of the Negative Regulatory Function of Lymphocyte Activation Gene-3. Journal of Immunology, 2002, 169, 5392-5395.	0.8	295
49	Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). European Journal of Immunology, 2002, 32, 2255.	2.9	186