Iban Eduardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7163587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genetics and Genomes, 2011, 7, 323-335.	1.6	154
2	Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Horticulture Research, 2019, 6, 58.	6.3	121
3	Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2008, 118, 139-150.	3.6	115
4	Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology, 2013, 13, 166.	3.6	113
5	Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genetics and Genomes, 2013, 9, 189-204.	1.6	105
6	Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture, 2010, 90, 1146-1154.	3.5	100
7	Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 2005, 112, 139-148.	3.6	98
8	Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. Journal of the American Society for Horticultural Science, 2007, 132, 80-89.	1.0	91
9	Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genetic Resources and Crop Evolution, 2007, 54, 1267-1283.	1.6	89
10	Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection. Euphytica, 2015, 205, 627-636.	1.2	72
11	QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica) Tj ETQq1	1 0.78431 1.6	4 rgβT /Ove
12	Identification of Melon Fruit Quality Quantitative Trait Loci Using Near-isogenic Lines. Journal of the American Society for Horticultural Science, 2008, 133, 139-151.	1.0	59
13	Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into â€ ⁻ Piel de Sapo' Melon (Cucucumis melo L.). PLoS ONE, 2014, 9, e104188.	2.5	58
14	Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almondÂ×Âpeach populations. Molecular Breeding, 2016, 36, 1.	2.1	56
15	Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Molecular Breeding, 2011, 28, 667-682.	2.1	53
16	Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica, 2013, 190, 279-288.	1.2	53
17	Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction–Mass Spectrometry (PTR-MS) and sensory analysis. Food Research International, 2017, 99, 133-146.	6.2	51
18	Inheritance mode of fruit traits in melon: Heterosis for fruit shape and its correlation with genetic distance. Euphytica, 2005, 144, 31-38.	1.2	48

Iban Eduardo

#	Article	IF	CITATIONS
19	Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Scientia Horticulturae, 2009, 121, 425-433.	3.6	47
20	A codominant diagnostic marker for the slow ripening trait in peach. Molecular Breeding, 2016, 36, 1.	2.1	44
21	A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach. Scientific Reports, 2017, 7, 6714.	3.3	39
22	High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies. Horticulture Research, 2015, 2, 15016.	6.3	35
23	Genetic analysis of the slow-melting flesh character in peach. Tree Genetics and Genomes, 2017, 13, 1.	1.6	31
24	Biochemical and genetic implications of the slow ripening phenotype in peach fruit. Scientia Horticulturae, 2020, 259, 108824.	3.6	26
25	Development of diagnostic markers for selection of the subacid trait in peach. Tree Genetics and Genomes, 2014, 10, 1695-1709.	1.6	24
26	Mapping Fruit Susceptibility to Postharvest Physiological Disorders and Decay Using a Collection of Near-isogenic Lines of Melon. Journal of the American Society for Horticultural Science, 2007, 132, 739-748.	1.0	24
27	Exploring sources of resistance to brown rot in an interspecific almond × peach population. Journal of the Science of Food and Agriculture, 2019, 99, 4105-4113.	3.5	22
28	Marker-assisted introgression (MAI) of almond genes into the peach background: a fast method to mine and integrate novel variation from exotic sources in long intergeneration species. Tree Genetics and Genomes, 2016, 12, 1.	1.6	21
29	On the Genetic Control of Heterosis for Fruit Shape in Melon (Cucumis Melo L.). Journal of Heredity, 2009, 100, 229-235.	2.4	20
30	Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars. Horticulture Research, 2021, 8, 11.	6.3	20
31	Mapping a major gene for red skin color suppression (highlighter) in peach. Euphytica, 2017, 213, 1.	1.2	16
32	Molecular defects of the CYP21 gene in Spanish girls with isolated precocious pubarche. European Journal of Endocrinology, 2002, 147, 485-488.	3.7	13
33	Identification of a new allele of the Dw gene causing brachytic dwarfing in peach. BMC Research Notes, 2018, 11, 386.	1.4	12
34	Fine mapping and identification of candidate genes for the peach powdery mildew resistance gene Vr3. Horticulture Research, 2020, 7, 175.	6.3	12
35	The Multisite <i>PeachRefPop</i> Collection: A True Cultural Heritage and International Scientific Tool for Fruit Trees. Plant Physiology, 2020, 184, 632-646.	4.8	12
36	Inheritance and QTL analysis of chilling and heat requirements for flowering in an interspecific almond x peach (Texas x Earlygold) F2 population. Euphytica, 2020, 216, 1.	1.2	12

Iban Eduardo

#	Article	IF	CITATIONS
37	A Decision Support System Based on Degree-Days to Initiate Fungicide Spray Programs for Peach Powdery Mildew in Catalonia, Spain. Plant Disease, 2020, 104, 2418-2425.	1.4	7
38	Resynthesis: Marker-Based Partial Reconstruction of Elite Genotypes in Clonally-Reproducing Plant Species. Frontiers in Plant Science, 2020, 11, 1205.	3.6	5
39	Reuteran and levan as carbohydrate sinks in transgenic sugarcane. Planta, 2012, 236, 1803-1815.	3.2	4
40	Fine mapping of the peach pollen sterility gene (Ps/ps) and detection of markers for marker-assisted selection. Molecular Breeding, 2020, 40, 1.	2.1	4
41	Comparative QTL analysis in peach †Earlygold' F2 and backcross progenies. Scientia Horticulturae, 2022, 293, 110726.	3.6	4
42	STATISTICAL MULTIVARIATE ANALYSIS OF MELON SHAPE: A CASE STUDY USING NEAR ISOGENIC LINES. Acta Horticulturae, 2005, , 537-544.	0.2	2
43	Preliminary results on effectiveness of marker-assisted seedling selection applied to Mendelian traits in peach. Acta Horticulturae, 2017, , 425-430.	0.2	2
44	HORTICULTURAL AND MOLECULAR CHARACTERIZATION OF LANDRACES OF INDIAN SNAPMELON (CUCUMIS) Tj	ETQq00	D rgBT /Over
45	A qPCR-based method for the detection and quantification of the peach powdery mildew (Podosphaera) Tj ETQq	1 1.0.7843 1.7	514 rgBT /O∖ 1
46	MAGNA and BLANQ Series: Two Yellow-fleshed and Three White-fleshed Nectarines. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 1130-1131.	1.0	1

47	IDENTIFICATION OF QTLs ASSOCIATED WITH COMMERCIAL POSTHARVEST QUALITY TRAITS AND DISORDERS USING A COLLECTION OF NEAR ISOGENIC LINES OF MELON. Acta Horticulturae, 2007, , 309-317.	0.2	1
48	Construction of a collection of introgression lines of "Texas―almond DNA fragments in the "Earlygold―peach genetic background. Horticulture Research, 0, , .	6.3	1
49	Genomics of Temperate Fruit Trees. , 2012, , 155-208.		0

50THE PEACH GENOME AND ITS APPLICATIONS. Acta Horticulturae, 2015, , 29-33.0.20