
Harry P De Koning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7163526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Toxoplasma gondii Oxopurine Transporter Binds Nucleobases and Nucleosides Using Different Binding Modes. International Journal of Molecular Sciences, 2022, 23, 710.	4.1	10
2	Imidazoline- and Benzamidine-Based Trypanosome Alternative Oxidase Inhibitors: Synthesis and Structure–Activity Relationship Studies. ACS Medicinal Chemistry Letters, 2022, 13, 312-318.	2.8	2
3	The Antiprotozoal Activity of Papua New Guinea Propolis and Its Triterpenes. Molecules, 2022, 27, 1622.	3.8	2
4	Differences in Transporters Rather than Drug Targets Are the Principal Determinants of the Different Innate Sensitivities of Trypanosoma congolense and Trypanozoon Subgenus Trypanosomes to Diamidines and Melaminophenyl Arsenicals. International Journal of Molecular Sciences, 2022, 23, 2844.	4.1	8
5	Nucleoside analogues for the treatment of animal trypanosomiasis. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 19, 21-30.	3.4	9
6	3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 19, 47-55.	3.4	5
7	Tetrahydrophthalazinone Inhibitor of Phosphodiesterase with <i>In Vitro</i> Activity against Intracellular Trypanosomatids. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	1
8	Antitrypanosomal and Antileishmanial Activity of Chalcones and Flavanones from Polygonum salicifolium. Pathogens, 2021, 10, 175.	2.8	18
9	Two New Antiprotozoal Diterpenes From the Roots of Acacia nilotica. Frontiers in Chemistry, 2021, 9, 624741.	3.6	9
10	Structure Activity Relationship of N-Substituted Phenyldihydropyrazolones Against Trypanosoma cruzi Amastigotes. Frontiers in Chemistry, 2021, 9, 608438.	3.6	1
11	Deazapurine Nucleoside Analogues for the Treatment of <i>Trichomonas vaginalis</i> . ACS Infectious Diseases, 2021, 7, 1752-1764.	3.8	14
12	Diminazene resistance in <i>Trypanosoma congolense</i> is not caused by reduced transport capacity but associated with reduced mitochondrial membrane potential. Molecular Microbiology, 2021, 116, 564-588.	2.5	14
13	Synthesis, antimicrobial activities and GAPDH docking of novel 1, 2, 3-triazole derivatives. Tropical Journal of Pharmaceutical Research, 2021, 18, 1101-1108.	0.3	6
14	Activity of Compounds from Temperate Propolis against Trypanosoma brucei and Leishmania mexicana. Molecules, 2021, 26, 3912.	3.8	13
15	Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Pathogens, 2021, 17, e1009734.	4.7	11
16	Synthesis, biological, and photophysical studies of molecular rotor-based fluorescent inhibitors of the trypanosome alternative oxidase. European Journal of Medicinal Chemistry, 2021, 220, 113470.	5.5	3
17	Direct, Lateâ€&tage Mono―N â€arylation of Pentamidine: Method Development, Mechanistic Insight, and Expedient Access to Novel Antiparastitics against Diamidineâ€Resistant Parasites. ChemMedChem, 2021, 16, 3396-3401.	3.2	2
18	Comprehensive characterization of purine and pyrimidine transport activities in <i>Trichomonas vaginalis</i> and functional cloning of a trichomonad nucleoside transporter. Molecular Microbiology, 2021, 116, 1489-1511.	2.5	9

#	Article	IF	CITATIONS
19	The phosphodiesterase-4 inhibitor roflumilast impacts Schistosoma mansoni ovipositing in vitro but displays only modest antischistosomal activity in vivo. Experimental Parasitology, 2020, 208, 107793.	1.2	6
20	Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi. Journal of Antimicrobial Chemotherapy, 2020, 75, 958-967.	3.0	8
21	C6–O-alkylated 7-deazainosine nucleoside analogues: Discovery of potent and selective anti-sleeping sickness agents. European Journal of Medicinal Chemistry, 2020, 188, 112018.	5.5	33
22	Novel flavanones with anti-trypanosomal activity isolated from Zambian and Tanzanian propolis samples. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 201-207.	3.4	8
23	The Strong Anti-Kinetoplastid Properties of Bee Propolis: Composition and Identification of the Active Agents and Their Biochemical Targets. Molecules, 2020, 25, 5155.	3.8	7
24	Cloning and functional complementation of ten Schistosoma mansoni phosphodiesterases expressed in the mammalian host stages. PLoS Neglected Tropical Diseases, 2020, 14, e0008447.	3.0	2
25	A Review of the Antimalarial, Antitrypanosomal, and Antileishmanial Activities of Natural Compounds Isolated From Nigerian Flora. Frontiers in Chemistry, 2020, 8, 617448.	3.6	21
26	Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. Journal of Biological Chemistry, 2020, 295, 8331-8347.	3.4	32
27	Structure–Activity Relationship Exploration of 3′-Deoxy-7-deazapurine Nucleoside Analogues as Anti- <i>Trypanosoma brucei</i> Agents. ACS Infectious Diseases, 2020, 6, 2045-2056.	3.8	20
28	Purine and pyrimidine transporters of pathogenic protozoa – conduits for therapeutic agents. Medicinal Research Reviews, 2020, 40, 1679-1714.	10.5	23
29	Efficacy of Novel Pyrazolone Phosphodiesterase Inhibitors in Experimental Mouse Models of Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	9
30	Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2020, 14, e0008458.	3.0	9
31	The Drugs of Sleeping Sickness: Their Mechanisms of Action and Resistance, and a Brief History. Tropical Medicine and Infectious Disease, 2020, 5, 14.	2.3	69
32	Structureâ€Activity Relationship of Phenylpyrazolones against Trypanosoma cruzi. ChemMedChem, 2020, 15, 1310-1321.	3.2	5
33	Discovery of Diaryl Ether Substituted Tetrahydrophthalazinones as TbrPDEB1 Inhibitors Following Structure-Based Virtual Screening. Frontiers in Chemistry, 2020, 8, 608030.	3.6	5
34	Antiparasitic and Cytotoxic Activity of Bokkosin, A Novel Diterpene-Substituted Chromanyl Benzoquinone From Calliandra portoricensis. Frontiers in Chemistry, 2020, 8, 574103.	3.6	9
35	Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei. ELife, 2020, 9, .	6.0	16
36	Discovery of novel <i>Schistosoma mansoni</i> PDE4A inhibitors as potential agents against schistosomiasis. Future Medicinal Chemistry, 2019, 11, 1703-1720.	2.3	8

#	Article	IF	CITATIONS
37	Identification of Phenylpyrazolone Dimers as a New Class of Anti―Trypanosoma cruzi Agents. ChemMedChem, 2019, 14, 1662-1668.	3.2	2
38	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2). Bioorganic and Medicinal Chemistry, 2019, 27, 4013-4029.	3.0	11
39	European propolis is highly active against trypanosomatids including Crithidia fasciculata. Scientific Reports, 2019, 9, 11364.	3.3	24
40	Investigation of 5'-Norcarbocyclic Nucleoside Analogues as Antiprotozoal and Antibacterial Agents. Molecules, 2019, 24, 3433.	3.8	12
41	Discovery of Sustainable Drugs for Neglected Tropical Diseases: Cashew Nut Shell Liquid (CNSL)â€Based Hybrids Target Mitochondrial Function and ATP Production in <i>Trypanosoma brucei</i> . ChemMedChem, 2019, 14, 621-635.	3.2	21
42	Alternative oxidase inhibitors: Mitochondrionâ€ŧargeting as a strategy for new drugs against pathogenic parasites and fungi. Medicinal Research Reviews, 2019, 39, 1553-1602.	10.5	30
43	Imidazole Derivatives as Promising Agents for the Treatment of Chagas Disease. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
44	Screening of a PDE-focused library identifies imidazoles with in vitro and in vivo antischistosomal activity. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 35-43.	3.4	10
45	The individual components of commercial isometamidium do not possess stronger trypanocidal activity than the mixture, nor bypass isometamidium resistance. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 54-58.	3.4	3
46	<p>Antileishmanial and antitrypanosomal activity of symmetrical dibenzyl-substituted α,β-unsaturated carbonyl-based compounds</p> . Drug Design, Development and Therapy, 2019, Volume 13, 1179-1185.	4.3	2
47	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 3998-4012.	3.0	13
48	Isolation of a Novel Flavanonol and an Alkylresorcinol with Highly Potent Anti-Trypanosomal Activity from Libyan propolis. Molecules, 2019, 24, 1041.	3.8	25
49	Potent Antitrypanosomal Activities of 3-Aminosteroids against African Trypanosomes: Investigation of Cellular Effects and of Cross-Resistance with Existing Drugs. Molecules, 2019, 24, 268.	3.8	14
50	Novel Minor Groove Binders Cure Animal African Trypanosomiasis in an in Vivo Mouse Model. Journal of Medicinal Chemistry, 2019, 62, 3021-3035.	6.4	18
51	Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness. Nature Communications, 2019, 10, 5564.	12.8	49
52	Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. European Journal of Medicinal Chemistry, 2019, 164, 689-705.	5.5	40
53	Docking Studies and Antiprotozoal Activity of Secondary Metabolites Isolated from Scrophularia Syriaca Benth. Growing in Saudi Arabia. Records of Natural Products, 2019, 14, 23-30.	1.3	4
54	Inhibition of trypanosome alternative oxidase without its N-terminal mitochondrial targeting signal (ΔMTS-TAO) by cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde derivatives active against T.Âbrucei and T.Âcongolense. European Journal of Medicinal Chemistry, 2018, 150, 385-402.	5.5	27

#	Article	IF	CITATIONS
55	Targeting a Subpocket in <i>Trypanosoma brucei</i> Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity. Journal of Medicinal Chemistry, 2018, 61, 3870-3888.	6.4	34
56	Trypanosoma brucei bloodstream forms express highly specific and separate transporters for adenine and hypoxanthine; evidence for a new protozoan purine transporter family?. Molecular and Biochemical Parasitology, 2018, 220, 46-56.	1.1	16
57	Multi-target mode of action of a Clerodane-type diterpenoid from Polyalthia longifolia targeting African trypanosomes. Scientific Reports, 2018, 8, 4613.	3.3	12
58	SAR of 4-Alkoxybenzoic Acid Inhibitors of the Trypanosome Alternative Oxidase. ACS Medicinal Chemistry Letters, 2018, 9, 923-928.	2.8	13
59	Cloning and characterisation of the Equilibrative Nucleoside Transporter family of Trypanosoma cruzi: ultra-high affinity and selectivity to survive in the intracellular niche. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2750-2763.	2.4	17
60	Cyclic Nucleotide-Specific Phosphodiesterases as Potential Drug Targets for Anti-Leishmania Therapy. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	17
61	Conjugates of 2,4-Dihydroxybenzoate and Salicylhydroxamate and Lipocations Display Potent Antiparasite Effects by Efficiently Targeting the <i>Trypanosoma brucei</i> and <i>Trypanosoma congolense</i> Mitochondrion. Journal of Medicinal Chemistry, 2017, 60, 1509-1522.	6.4	34
62	The Chemical Characterization of Nigerian Propolis samples and Their Activity Against Trypanosoma brucei. Scientific Reports, 2017, 7, 923.	3.3	40
63	Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 206-226.	3.4	32
64	Evaluation of the antiprotozoan properties of 5′-norcarbocyclic pyrimidine nucleosides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3081-3086.	2.2	13
65	Functional and structural analysis of AT-specific minor groove binders that disrupt DNA–protein interactions and cause disintegration of the Trypanosoma brucei kinetoplast. Nucleic Acids Research, 2017, 45, 8378-8391.	14.5	28
66	9-(2′-Deoxy-2′-Fluoro-β- <scp>d</scp> -Arabinofuranosyl) Adenine Is a Potent Antitrypanosomal Adenosine Analogue That Circumvents Transport-Related Drug Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	16
67	Bioassay-guided isolation of active principles from Nigerian medicinal plants identifies new trypanocides with low toxicity and no cross-resistance to diamidines and arsenicals. Journal of Ethnopharmacology, 2017, 202, 256-264.	4.1	19
68	Drug resistance in protozoan parasites. Emerging Topics in Life Sciences, 2017, 1, 627-632.	2.6	37
69	The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target. PLoS Neglected Tropical Diseases, 2017, 11, e0005891.	3.0	16
70	Seroepidemiology and molecular diversity of Leishmania donovani complex in Georgia. Parasites and Vectors, 2016, 9, 279.	2.5	6
71	Reduced Mitochondrial Membrane Potential Is a Late Adaptation of Trypanosoma brucei brucei to Isometamidium Preceded by Mutations in the γ Subunit of the F1Fo-ATPase. PLoS Neglected Tropical Diseases, 2016, 10, e0004791.	3.0	34
72	Antitrypanosomal Activity of a Novel Taccalonolide from the Tubers of <i>Tacca leontopetaloides</i> . Phytochemical Analysis, 2016, 27, 217-221.	2.4	11

#	Article	IF	CITATIONS
73	Chemical characterisation of Nigerian red propolis and its biological activity against <i>Trypanosoma Brucei</i> . Phytochemical Analysis, 2016, 27, 107-115.	2.4	56
74	The animal trypanosomiases and their chemotherapy: a review. Parasitology, 2016, 143, 1862-1889.	1.5	308
75	Trypanosoma brucei Methylthioadenosine Phosphorylase Protects the Parasite from the Antitrypanosomal Effect of Deoxyadenosine. Journal of Biological Chemistry, 2016, 291, 11717-11726.	3.4	9
76	Exploiting the Achilles' heel of membrane trafficking in trypanosomes. Current Opinion in Microbiology, 2016, 34, 97-103.	5.1	28
77	Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 23-34.	3.4	38
78	Comparative genomics of drug resistance in Trypanosoma brucei rhodesiense. Cellular and Molecular Life Sciences, 2016, 73, 3387-3400.	5.4	22
79	Synthesis and evaluation of analogs of the phenylpyridazinone NPD-001 as potent trypanosomal TbrPDEB1 phosphodiesterase inhibitors and in vitro trypanocidals. Bioorganic and Medicinal Chemistry, 2016, 24, 1573-1581.	3.0	29
80	Chemical and Antimicrobial Profiling of Propolis from Different Regions within Libya. PLoS ONE, 2016, 11, e0155355.	2.5	35
81	Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. ELife, 2016, 5, .	6.0	147
82	The ever unfolding story of cAMP signaling in trypanosomatids: vive la difference!. Frontiers in Pharmacology, 2015, 6, 185.	3.5	36
83	Potent Trypanocidal Curcumin Analogs Bearing a Monoenone Linker Motif Act on <i>Trypanosoma brucei</i> by Forming an Adduct with Trypanothione. Molecular Pharmacology, 2015, 87, 451-464.	2.3	24
84	Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Frontiers in Pharmacology, 2015, 6, 32.	3.5	63
85	Fragment-Based Screening in Tandem with Phenotypic Screening Provides Novel Antiparasitic Hits. Journal of Biomolecular Screening, 2015, 20, 131-140.	2.6	23
86	A New NonpolarN-Hydroxy Imidazoline Lead Compound with Improved Activity in a Murine Model of Late-Stage Trypanosoma brucei brucei Infection Is Not Cross-Resistant with Diamidines. Antimicrobial Agents and Chemotherapy, 2015, 59, 890-904.	3.2	12
87	Lowering the p K a of a bisimidazoline lead with halogen atoms results in improved activity and selectivity against Trypanosoma brucei inÂvitro. European Journal of Medicinal Chemistry, 2015, 101, 806-817.	5.5	24
88	Chimerization at the AQP2–AQP3 locus is the genetic basis of melarsoprol–pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5, 65-68.	3.4	44
89	Functional analysis of drug resistanceâ€associated mutations in the <scp><i>T</i></scp> <i>rypanosoma brucei</i> adenosine transporter 1 (<scp>TbAT</scp> 1) and the proposal of a structural model for the protein. Molecular Microbiology, 2015, 96, 887-900.	2.5	41
90	Targeting the Parasite's DNA with Methyltriazenyl Purine Analogs Is a Safe, Selective, and Efficacious Antitrypanosomal Strategy. Antimicrobial Agents and Chemotherapy, 2015, 59, 6708-6716.	3.2	18

#	Article	IF	CITATIONS
91	SAR Studies of Diphenyl Cationic Trypanocides: Superior Activity of Phosphonium over Ammonium Salts. ACS Medicinal Chemistry Letters, 2015, 6, 151-155.	2.8	7
92	TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research, 2015, 43, D637-D644.	14.5	35
93	Protocols for the Routine Screening of Drug Sensitivity in the Human Parasite Trichomonas vaginalis. Methods in Molecular Biology, 2015, 1263, 103-110.	0.9	7
94	Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis. PLoS Pathogens, 2015, 11, e1004942.	4.7	63
95	Design and Synthesis of a Series of Truncated Neplanocin Fleximers. Molecules, 2014, 19, 21200-21214.	3.8	12
96	Epidemiology of Visceral Leishmaniasis in Georgia. PLoS Neglected Tropical Diseases, 2014, 8, e2725.	3.0	32
97	In and out of the minor groove: interaction of an AT-rich DNA with the drug CD27. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1614-1621.	2.5	8
98	Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 55-63.	3.4	26
99	Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. Journal of Antimicrobial Chemotherapy, 2014, 69, 651-663.	3.0	106
100	Progress Towards New Treatments for Human African Trypanosomiasis. , 2014, , 217-238.		3
101	Structure–Activity Relationships of Synthetic Cordycepin Analogues as Experimental Therapeutics for African Trypanosomiasis. Journal of Medicinal Chemistry, 2013, 56, 9861-9873.	6.4	51
102	Functional expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity for diminazene uptake. International Journal for Parasitology: Drugs and Drug Resistance, 2013, 3, 69-76.	3.4	57
103	Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends in Parasitology, 2013, 29, 110-118.	3.3	207
104	Aquaporin 2 Mutations in Trypanosoma brucei gambiense Field Isolates Correlate with Decreased Susceptibility to Pentamidine and Melarsoprol. PLoS Neglected Tropical Diseases, 2013, 7, e2475.	3.0	63
105	Cyclic AMP Effectors in African Trypanosomes Revealed by Genome-Scale RNA Interference Library Screening for Resistance to the Phosphodiesterase Inhibitor CpdA. Antimicrobial Agents and Chemotherapy, 2013, 57, 4882-4893.	3.2	59
106	Pyrimidine Salvage in <i>Trypanosoma brucei</i> Bloodstream Forms and the Trypanocidal Action of Halogenated Pyrimidines. Molecular Pharmacology, 2013, 83, 439-453.	2.3	57
107	Pyrimidine Biosynthesis Is Not an Essential Function for Trypanosoma brucei Bloodstream Forms. PLoS ONE, 2013, 8, e58034.	2.5	30
108	Validation of novel fluorescence assays for the routine screening of drug susceptibilities of Trichomonas vaginalis. Journal of Antimicrobial Chemotherapy, 2012, 67, 933-943.	3.0	23

#	Article	IF	CITATIONS
109	Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10996-11001.	7.1	134
110	Catechol Pyrazolinones as Trypanocidals: Fragment-Based Design, Synthesis, and Pharmacological Evaluation of Nanomolar Inhibitors of Trypanosomal Phosphodiesterase B1. Journal of Medicinal Chemistry, 2012, 55, 8745-8756.	6.4	50
111	Pharmacological Validation of Trypanosoma brucei Phosphodiesterases as Novel Drug Targets. Journal of Infectious Diseases, 2012, 206, 229-237.	4.0	84
112	Synthesis and Structure–Activity Analysis of New Phosphonium Salts with Potent Activity against African Trypanosomes. Journal of Medicinal Chemistry, 2012, 55, 2606-2622.	6.4	45
113	The Diamidine Diminazene Aceturate Is a Substrate for the High-Affinity Pentamidine Transporter: Implications for the Development of High Resistance Levels in Trypanosomes. Molecular Pharmacology, 2011, 80, 110-116.	2.3	37
114	Synthesis of Marine-Derived 3-Alkylpyridinium Alkaloids with Potent Antiprotozoal Activity. ACS Medicinal Chemistry Letters, 2011, 2, 901-906.	2.8	6
115	Phosphodiesterase inhibitors as a new generation of antiprotozoan drugs: exploiting the benefit of enzymes that are highly conserved between host and parasite. Future Medicinal Chemistry, 2011, 3, 1289-1306.	2.3	59
116	Symmetrical choline-derived dications display strong anti-kinetoplastid activity. Journal of Antimicrobial Chemotherapy, 2011, 66, 111-125.	3.0	40
117	Cyclic-nucleotide signalling in protozoa. FEMS Microbiology Reviews, 2011, 35, 515-541.	8.6	48
118	Therapeutic Potential of Phosphodiesterase Inhibitors in Parasitic Diseases. Handbook of Experimental Pharmacology, 2011, , 487-510.	1.8	30
119	Trypanocidal Furamidine Analogues: Influence of Pyridine Nitrogens on Trypanocidal Activity, Transport Kinetics, and Resistance Patterns. Antimicrobial Agents and Chemotherapy, 2011, 55, 2352-2361.	3.2	49
120	A fluorescence-based assay for the uptake of CPD0801 (DB829) by African trypanosomes. Molecular and Biochemical Parasitology, 2010, 174, 145-149.	1.1	9
121	Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. European Journal of Medicinal Chemistry, 2010, 45, 941-956.	5.5	145
122	Evaluation of Nucleoside Hydrolase Inhibitors for Treatment of African Trypanosomiasis. Antimicrobial Agents and Chemotherapy, 2010, 54, 1900-1908.	3.2	35
123	Multiple Genetic Mechanisms Lead to Loss of Functional TbAT1 Expression in Drug-Resistant Trypanosomes. Eukaryotic Cell, 2010, 9, 336-343.	3.4	30
124	Uptake of purines in Plasmodium falciparum-infected human erythrocytes is mostly mediated by the human Equilibrative Nucleoside Transporter and the human Facilitative Nucleobase Transporter. Malaria Journal, 2010, 9, .	2.3	1
125	Uptake of purines in Plasmodium falciparum-infected human erythrocytes is mostly mediated by the human Equilibrative Nucleoside Transporter and the human Facilitative Nucleobase Transporter. Malaria Journal, 2010, 9, 36.	2.3	28
126	Diamidines for human African trypanosomiasis. Current Opinion in Investigational Drugs, 2010, 11, 876-83.	2.3	61

#	Article	IF	CITATIONS
127	Genotypic Status of the TbAT1/P2 Adenosine Transporter of Trypanosoma brucei gambiense Isolates from Northwestern Uganda following Melarsoprol Withdrawal. PLoS Neglected Tropical Diseases, 2009, 3, e523.	3.0	16
128	Predictive Computational Models of Substrate Binding by a Nucleoside Transporter. Journal of Biological Chemistry, 2009, 284, 34028-34035.	3.4	28
129	Characterisation of the plasma membrane subproteome of bloodstream form <i>Trypanosoma brucei</i> . Proteomics, 2008, 8, 83-99.	2.2	63
130	Propidium iodide-based methods for monitoring drug action in the kinetoplastidae: Comparison with the Alamar Blue assay. Analytical Biochemistry, 2008, 382, 87-93.	2.4	75
131	Ever-increasing complexities of diamidine and arsenical crossresistance in African trypanosomes. Trends in Parasitology, 2008, 24, 345-349.	3.3	58
132	A comprehensive model of purine uptake by the malaria parasite <i>Plasmodium falciparum</i> : identification of four purine transport activities in intraerythrocytic parasites. Biochemical Journal, 2008, 411, 287-295.	3.7	42
133	Loss of the High-Affinity Pentamidine Transporter Is Responsible for High Levels of Cross-Resistance between Arsenical and Diamidine Drugs in African Trypanosomes. Molecular Pharmacology, 2007, 71, 1098-1108.	2.3	113
134	Molecular Interactions Underlying the Unusually High Adenosine Affinity of a NovelTrypanosoma bruceiNucleoside Transporter. Molecular Pharmacology, 2007, 71, 921-929.	2.3	41
135	2,N ⁶ -Disubstituted Adenosine Analogs with Antitrypanosomal and Antimalarial Activities. Antimicrobial Agents and Chemotherapy, 2007, 51, 3796-3802.	3.2	45
136	Drugs and drug resistance in African trypanosomiasis. Drug Resistance Updates, 2007, 10, 30-50.	14.4	236
137	Pyrimidine transporters of trypanosomes – a class apart?. Trends in Parasitology, 2007, 23, 190.	3.3	14
138	An improved and highly sensitive microfluorimetric method for assessing susceptibility of Plasmodium falciparum to antimalarial drugs in vitro. Malaria Journal, 2006, 5, 95.	2.3	38
139	Trypanosoma brucei: A survey of pyrimidine transport activities. Experimental Parasitology, 2006, 114, 118-125.	1.2	48
140	Biosynthesis and uptake of thiamine (vitamin B1) in bloodstream form Trypanosoma brucei brucei and interference of the vitamin with melarsen oxide activity. International Journal for Parasitology, 2006, 36, 229-236.	3.1	11
141	Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiology Reviews, 2005, 29, 987-1020.	8.6	175
142	Trypanosoma brucei: expression of multiple purine transporters prevents the development of allopurinol resistance. Experimental Parasitology, 2005, 109, 80-86.	1.2	28
143	Purine Nucleobase Transport in Amastigotes of Leishmania mexicana : Involvement in Allopurinol Uptake. Antimicrobial Agents and Chemotherapy, 2005, 49, 3682-3689.	3.2	35
144	Molecular Pharmacology of Adenosine Transport in Trypanosoma brucei: P1/P2 Revisited. Molecular Pharmacology, 2005, 68, 589-595.	2.3	49

#	Article	IF	CITATIONS
145	Detection of arsenical drug resistance in Trypanosoma brucei with a simple fluorescence test. Lancet, The, 2005, 366, 486-487.	13.7	46
146	The Trypanocide Diminazene Aceturate Is Accumulated Predominantly through the TbAT1 Purine Transporter: Additional Insights on Diamidine Resistance in African Trypanosomes. Antimicrobial Agents and Chemotherapy, 2004, 48, 1515-1519.	3.2	99
147	Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs. Blood, 2004, 104, 3372-3377.	1.4	80
148	Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends in Parasitology, 2003, 19, 232-239.	3.3	208
149	Identification and characterisation of high affinity nucleoside and nucleobase transporters in Toxoplasma gondii. International Journal for Parasitology, 2003, 33, 821-831.	3.1	65
150	Mechanisms of Arsenical and Diamidine Uptake and Resistance in Trypanosoma brucei. Eukaryotic Cell, 2003, 2, 1003-1008.	3.4	186
151	Cloning, Heterologous Expression, and in Situ Characterization of the First High Affinity Nucleobase Transporter from a Protozoan. Journal of Biological Chemistry, 2003, 278, 23502-23507.	3.4	44
152	ALeishmania majorNucleobase Transporter Responsible for Allopurinol Uptake Is a Functional Homolog of theTrypanosoma bruceiH2 Transporter Molecular Pharmacology, 2003, 63, 814-820.	2.3	49
153	Different Substrate Recognition Motifs of Human and Trypanosome Nucleobase Transporters. Journal of Biological Chemistry, 2002, 277, 26149-26156.	3.4	90
154	Uptake of pentamidine in Trypanosoma brucei brucei is mediated by the P2 adenosine transporter and at least one novel, unrelated transporter. Acta Tropica, 2001, 80, 245-250.	2.0	62
155	Uptake of Pentamidine inTrypanosoma brucei bruceiis Mediated by Three Distinct Transporters: Implications for Cross-Resistance with Arsenicals. Molecular Pharmacology, 2001, 59, 586-592.	2.3	137
156	Transporters in African trypanosomes: role in drug action and resistance. International Journal for Parasitology, 2001, 31, 512-522.	3.1	112
157	Differential regulation of nucleoside and nucleobase transporters in Crithidia fasciculata and Trypanosoma brucei brucei. Molecular and Biochemical Parasitology, 2000, 106, 93-107.	1.1	57
158	Further evidence for a link between melarsoprol resistance and P2 transporter function in African trypanosomes. Molecular and Biochemical Parasitology, 2000, 106, 181-185.	1.1	41
159	Adenosine Transporters in Bloodstream Forms of <i>Trypanosoma brucei brucei</i> : Substrate Recognition Motifs and Affinity for Trypanocidal Drugs. Molecular Pharmacology, 1999, 56, 1162-1170.	2.3	139
160	A drug resistance determinant in Trypanosoma brucei. Trends in Microbiology, 1999, 7, 469-471.	7.7	40
161	A highly selective, high-affinity transporter for uracil in <i>Trypanosoma brucei brucei</i> : evidence for proton-dependent transport. Biochemistry and Cell Biology, 1998, 76, 853-858.	2.0	44
162	Characterization of a Nucleoside/Proton Symporter in ProcyclicTrypanosoma brucei brucei. Journal of Biological Chemistry, 1998, 273, 9486-9494.	3.4	85

#	Article	IF	CITATIONS
163	A highly selective, high-affinity transporter for uracil in <i>Trypanosoma brucei brucei</i> : evidence for proton-dependent transport. Biochemistry and Cell Biology, 1998, 76, 853-858.	2.0	22
164	Hypoxanthine Uptake through a Purine-Selective Nucleobase Transporter in Trypano Soma Brucei Brucei Procyclic Cells is Driven by Protonmotive Force. FEBS Journal, 1997, 247, 1102-1110.	0.2	57
165	Purine nucleobase transport in bloodstream forms of Trypanosoma brucei brucei is mediated by two novel transporters. Molecular and Biochemical Parasitology, 1997, 89, 245-258.	1.1	72
166	The Secretion of ?40-MSH from Xenopus Melanotropes Involves Calcium Influx through ?-Conotoxin-Sensitive Voltage-Operated Calcium Channels. Journal of Neuroendocrinology, 1994, 6, 457-464.	2.6	29
167	Dual Action of GABA _A Receptors on the Secretory Process of Melanotrophs of <i>Xenopus laevis</i> . Neuroendocrinology, 1993, 58, 80-85.	2.5	9
168	Dynamics of cyclic-AMP efflux in relation to α-MSH secretion from melanotrope cells of Xenopus laevis. Life Sciences, 1992, 51, 1667-1673.	4.3	19
169	Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis. General and Comparative Endocrinology, 1992, 87, 394-401.	1.8	4
170	Indirect Action of Elevated Potassium and Neuropeptide Y on αMSH Secretion from the Pars Intermedia of <i>Xenopus laevis</i> : A Biochemical and Morphological Study. Neuroendocrinology, 1991, 54, 68-76.	2.5	21
171	Synthetic ligustrazine based cyclohexanone and oxime analogs as Anti-Trypanosoma and Anti-Leishmanial agentes. Brazilian Journal of Pharmaceutical Sciences, 0, 57, .	1.2	2