Daria Onichtchouk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/716318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silencing of TGF-Î ² signalling by the pseudoreceptor BAMBI. Nature, 1999, 401, 480-485.	27.8	642
2	Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature, 1997, 389, 517-519.	27.8	328
3	Cellular interpretation of multiple TGF-β signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development (Cambridge), 1997, 124, 4467-4480.	2.5	222
4	Pou5f1 Transcription Factor Controls Zygotic Gene Activation In Vertebrates. Science, 2013, 341, 1005-1009.	12.6	217
5	Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nature Protocols, 2006, 1, 947-953.	12.0	189
6	Inhibition of GSK3 Promotes Replication and Survival of Pancreatic Beta Cells. Journal of Biological Chemistry, 2007, 282, 12030-12037.	3.4	134
7	Nucleolus: A Central Hub for Nuclear Functions. Trends in Cell Biology, 2019, 29, 647-659.	7.9	119
8	Pou5f1-Dependent EGF Expression Controls E-Cadherin Endocytosis, Cell Adhesion, and Zebrafish Epiboly Movements. Developmental Cell, 2013, 24, 486-501.	7.0	90
9	Zebrafish Pou5f1â€dependent transcriptional networks in temporal control of early development. Molecular Systems Biology, 2010, 6, 354.	7.2	77
10	Transgene driving GFP expression from the promoter of the zona pellucida genezpcis expressed in oocytes and provides an early marker for gonad differentiation in zebrafish. Developmental Dynamics, 2003, 228, 393-404.	1.8	76
11	The Pou5f1/Pou3f-dependent but SoxB-independent regulation of conserved enhancer N2 initiates Sox2 expression during epiblast to neural plate stages in vertebrates. Developmental Biology, 2011, 352, 354-366.	2.0	63
12	Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation. Genome Research, 2019, 29, 383-395.	5.5	49
13	Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Developmental Biology, 2011, 356, 323-336.	2.0	46
14	A Pou5f1/Oct4 dependent Klf2a, Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development during zebrafish embryogenesis. Developmental Biology, 2014, 385, 433-447.	2.0	41
15	Maternal Nanog is critical for the zebrafish embryo architecture and for cell viability during gastrulation. Development (Cambridge), 2018, 145, .	2.5	35
16	Pou5f1/oct4 in pluripotency control: Insights from zebrafish. Genesis, 2012, 50, 75-85.	1.6	33
17	Zygotic Genome Activators, Developmental Timing, and Pluripotency. Current Topics in Developmental Biology, 2016, 116, 273-297.	2.2	26
18	Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics. 2022, 54, 1037-1050.	21.4	26

DARIA ONICHTCHOUK

#	Article	IF	CITATIONS
19	Limiting transport steps and novel interactions of Connexin-43 along the secretory pathway. Histochemistry and Cell Biology, 2009, 132, 263-280.	1.7	25
20	Pou5f1/Oct4 Promotes Cell Survival via Direct Activation of mych Expression during Zebrafish Gastrulation. PLoS ONE, 2014, 9, e92356.	2.5	17
21	Evolution and functions of Oct4 homologs in non-mammalian vertebrates. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 770-779.	1.9	16
22	DANIO-CODE: Toward an Encyclopedia of DNA Elements in Zebrafish. Zebrafish, 2016, 13, 54-60.	1.1	15
23	Fast structural responses of gap junction membrane domains to AB5 toxins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4125-33.	7.1	11
24	hnRNP-K Targets Open Chromatin in Mouse Embryonic Stem Cells in Concert with Multiple Regulators. Stem Cells, 2019, 37, 1018-1029.	3.2	11
25	Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nature Communications, 2022, 13, 788.	12.8	9
26	Regulation of Zygotic Genome and Cellular Pluripotency. Biochemistry (Moscow), 2015, 80, 1723-1733.	1.5	4
27	Oct4/Pou5f1 controls tissue-specific repressors in early zebrafish embryo. Journal of Stem Cells and Regenerative Medicine, 2010, 6, 82.	2.2	3
28	Embryonic Patterning of Xenopus Mesoderm by Bmp-4. , 2000, , 165-190.		2
29	Initiation of cyp26a1 Expression in the Zebrafish Anterior Neural Plate by a Novel Cis-Acting Element. PLoS ONE, 2016, 11, e0150639.	2.5	1