William H Woodall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7162966/publications.pdf

Version: 2024-02-01

149 papers 10,412 citations

52 h-index 97 g-index

165 all docs

165
docs citations

165 times ranked 2649 citing authors

#	Article	IF	CITATIONS
1	A critique of a variety of "memory-based―process monitoring methods. Journal of Quality Technology, 2023, 55, 18-42.	2.5	27
2	Monitoring proportions with two components of common cause variation. Journal of Quality Technology, 2022, 54, 324-337.	2.5	3
3	Controlling the conditional false alarm rate for the MEWMA control chart. Journal of Quality Technology, 2022, 54, 487-502.	2.5	9
4	The case against generally weighted moving average (GWMA) control charts. Quality Engineering, 2022, 34, 75-81.	1.1	10
5	Letter on statistical process monitoring research: Misdirections and recommendations. Quality and Reliability Engineering International, 2022, 38, 2198-2199.	2.3	4
6	Multivariate time-between-events monitoring: An overview and some overlooked underlying complexities. Quality Engineering, 2021, 33, 13-25.	1.1	13
7	A Review of Some Sampling and Aggregation Strategies for Basic Statistical Process Monitoring. Journal of Quality Technology, 2021, 53, 1-16.	2.5	42
8	Use of Conditional False Alarm Metric in Statistical Process Monitoring. , 2021, , 3-12.		6
9	Efficacy of a Web-Based Intervention (Smart Choices 4 Teens) for Facilitating Parent-Adolescent Communication About Relationships and Sexuality: Randomized Controlled Trial. JMIR Pediatrics and Parenting, 2021, 4, e19114.	1.6	3
10	The role of the normal distribution in statistical process monitoring. Quality Engineering, 2021, 33, 497-510.	1.1	10
11	The impracticality of homogeneously weighted moving average and progressive mean control chart approaches. Quality and Reliability Engineering International, 2021, 37, 3779-3794.	2.3	26
12	Learning curve for completely thoracoscopic anatomic sublobar resection. Minerva Surgery, 2021, , .	0.6	2
13	An overview and critique of the use of cumulative sum methods with surgical learning curve data. Statistics in Medicine, 2021, 40, 1400-1413.	1.6	24
14	Dynamic probability control limits for CUSUM charts for monitoring proportions with timeâ€varying sample sizes. Quality and Reliability Engineering International, 2020, 36, 592-603.	2.3	11
15	On the design of control charts with guaranteed conditional performance under estimated parameters. Quality and Reliability Engineering International, 2020, 36, 2610-2620.	2.3	16
16	The value of summary statistics for anomaly detection in temporally evolving networks: A performance evaluation study. Applied Stochastic Models in Business and Industry, 2020, 36, 980-1013.	1.5	7
17	Modeling and detecting change in temporal networks via the degree corrected stochastic block model. Quality and Reliability Engineering International, 2019, 35, 1363-1378.	2.3	35
18	Rethinking control chart design and evaluation. Quality Engineering, 2019, 31, 596-605.	1.1	43

#	Article	IF	CITATIONS
19	Statistical evaluation of spectral methods for anomaly detection in static networks. Network Science, 2019, 7, 319-352.	1.0	5
20	Assessing the Statistical Analyses Used in <i>Basic and Applied Social Psychology</i> After Their <i>p</i> -Value Ban. American Statistician, 2019, 73, 374-384.	1.6	47
21	A cyber-physical attack taxonomy for production systems: a quality control perspective. Journal of Intelligent Manufacturing, 2019, 30, 2489-2504.	7.3	35
22	Discussion of "Scaling-up process characterization― Quality Engineering, 2018, 30, 88-92.	1.1	2
23	Detecting node propensity changes in the dynamic degree corrected stochastic block model. Social Networks, 2018, 54, 209-227.	2.1	28
24	The effect of temporal aggregation level in social network monitoring. PLoS ONE, 2018, 13, e0209075.	2.5	17
25	Discussion of "Statistical methods for network surveillance― Applied Stochastic Models in Business and Industry, 2018, 34, 446-448.	1.5	6
26	A note on GLR charts for monitoring count processes. Quality and Reliability Engineering International, 2018, 34, 1041-1044.	2.3	6
27	Performance evaluation of social network anomaly detection using a moving window–based scan method. Quality and Reliability Engineering International, 2018, 34, 1699-1716.	2.3	23
28	Can long-term historical data from electronic medical records improve surveillance for epidemics of acute respiratory infections? A systematic evaluation. PLoS ONE, 2018, 13, e0191324.	2.5	0
29	Monitoring foreclosure rates with a spatially risk-adjusted Bernoulli CUSUM chart for concurrent observations. Journal of Applied Statistics, 2017, 44, 325-341.	1.3	5
30	Reduction of the Effect of Estimation Error on In-control Performance for Risk-adjusted Bernoulli CUSUM Chart with Dynamic Probability Control Limits. Quality and Reliability Engineering International, 2017, 33, 381-386.	2.3	16
31	An Evaluation of Wheeler's Method for Monitoring the Rate of Rare Events. Quality and Reliability Engineering International, 2017, 33, 503-513.	2.3	1
32	Dynamic probability control limits for riskâ€adjusted CUSUM charts based on multiresponses. Statistics in Medicine, 2017, 36, 2547-2558.	1.6	16
33	Improved implementation of the risk-adjusted Bernoulli CUSUM chart to monitor surgical outcome quality. International Journal for Quality in Health Care, 2017, 29, 343-348.	1.8	11
34	Using the predictive distribution to determine control limits for the Bayesian MEWMA chart. Communications in Statistics Part B: Simulation and Computation, 2017, 46, 7818-7826.	1.2	7
35	An overview and perspective on social network monitoring. IISE Transactions, 2017, 49, 354-365.	2.4	97
36	Dynamic Probability Control Limits for Lower and Twoâ€6ided Riskâ€Adjusted Bernoulli CUSUM Charts. Quality and Reliability Engineering International, 2017, 33, 607-616.	2.3	15

3

#	Article	IF	CITATIONS
37	A head-to-head comparative study of the conditional performance of control charts based on estimated parameters. Quality Engineering, 2017, 29, 244-253.	1.1	25
38	CUSUM charts with controlled conditional performance under estimated parameters. Quality Engineering, 2016, 28, 402-415.	1.1	36
39	Debate: what is the best method to monitor surgical performance?. BMC Surgery, 2016, 16, 15.	1.3	13
40	CUSUM procedures with probability control limits for monitoring processes with variable sample sizes. IIE Transactions, 2016, 48, 759-771.	2.1	22
41	Self-Starting Monitoring Scheme for Poisson Count Data With Varying Population Sizes. Technometrics, 2016, 58, 460-471.	1.9	16
42	The Difficulty in Designing Shewhart <i>XÌ,,</i> and <i>X</i> Control Charts with Estimated Parameters. Journal of Quality Technology, 2015, 47, 127-138.	2.5	126
43	Another Look at the EWMA Control Chart with Estimated Parameters. Journal of Quality Technology, 2015, 47, 363-382.	2.5	120
44	The Monitoring and Improvement of Surgical-Outcome Quality. Journal of Quality Technology, 2015, 47, 383-399.	2.5	59
45	Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts. Statistics in Medicine, 2015, 34, 3336-3348.	1.6	45
46	Cumulative Sum Control Charts for Monitoring Weibull-distributed Time Between Events. Quality and Reliability Engineering International, 2015, 31, 839-849.	2.3	46
47	A Comparison of the Performance of Phase II Simple Linear Profile Control Charts when Parameters are Estimated. Communications in Statistics Part B: Simulation and Computation, 2015, 44, 1432-1440.	1.2	40
48	Guaranteed conditional performance of the <i>S</i> ² control chart with estimated parameters. International Journal of Production Research, 2015, 53, 4405-4413.	7.5	70
49	Some Recent Results on Monitoring the Rate of a Rare Event. , 2015, , 15-27.		11
50	The Conditional In-Control Performance of Self-Starting Control Charts. Quality Engineering, 2015, 27, 488-499.	1.1	26
51	A Reevaluation of the Adaptive Exponentially Weighted Moving Average Control Chart When Parameters are Estimated. Quality and Reliability Engineering International, 2015, 31, 1611-1622.	2.3	70
52	The impact of varying patient populations on the in-control performance of the risk-adjusted CUSUM chart. International Journal for Quality in Health Care, 2015, 27, 31-36.	1.8	24
53	Surveillance of Nonhomogeneous Poisson Processes. Technometrics, 2015, 57, 388-394.	1.9	18
54	An overview of George Box's contributions to process monitoring and feedback adjustment. Applied Stochastic Models in Business and Industry, 2014, 30, 53-61.	1.5	2

#	Article	IF	Citations
55	Control Charts for Monitoring Linear Profiles with Within-Profile Correlation Using Gaussian Process Models. Quality and Reliability Engineering International, 2014, 30, 487-501.	2.3	47
56	Control charts for accident frequency: a motivation for real-time occupational safety monitoring. International Journal of Injury Control and Safety Promotion, 2014, 21, 154-162.	2.0	14
57	Discussion of "Latent Structures-Based Multivariate Statistical Process Control: A Paradigm Shift― Quality Engineering, 2014, 26, 92-95.	1.1	2
58	Exponential CUSUM Charts with Estimated Control Limits. Quality and Reliability Engineering International, 2014, 30, 275-286.	2.3	96
59	An Overview of Phase I Analysis for Process Improvement and Monitoring. Journal of Quality Technology, 2014, 46, 265-280.	2.5	183
60	CUSUM Charts for Monitoring the Characteristic Life of Censored Weibull Lifetimes. Journal of Quality Technology, 2014, 46, 340-358.	2.5	42
61	Some Current Directions in the Theory and Application of Statistical Process Monitoring. Journal of Quality Technology, 2014, 46, 78-94.	2.5	249
62	Geometric Charts with Estimated Control Limits. Quality and Reliability Engineering International, 2013, 29, 209-223.	2.3	76
63	The Effect of Parameter Estimation on Upperâ€sided Bernoulli Cumulative Sum Charts. Quality and Reliability Engineering International, 2013, 29, 639-651.	2.3	41
64	The Effect of Aggregating Data When Monitoring a Poisson Process. Journal of Quality Technology, 2013, 45, 260-272.	2.5	23
65	A review and comparison of likelihood-based charting methods. IIE Transactions, 2012, 44, 724-743.	2.1	26
66	Innovation, Quality Engineering, and Statistics. Quality Engineering, 2012, 24, 20-29.	1.1	32
67	On the Equivalence of the Bernoulli and Geometric CUSUM Charts. Journal of Quality Technology, 2012, 44, 54-62.	2,5	25
68	The Monitoring of Linear Profiles with a GLR Control Chart. Journal of Quality Technology, 2012, 44, 348-362.	2.5	35
69	A framework for variation visualization and understanding in complex manufacturing systems. Journal of Intelligent Manufacturing, 2012, 23, 2025-2036.	7.3	20
70	CUSUM charts for monitoring a zeroâ€inflated poisson process. Quality and Reliability Engineering International, 2012, 28, 181-192.	2.3	38
71	A Spatiotemporal Method for the Monitoring of Image Data. Quality and Reliability Engineering International, 2012, 28, 967-980.	2.3	81
72	Methods for Monitoring Multiple Proportions When Inspecting Continuously. Journal of Quality Technology, 2011, 43, 237-248.	2.5	44

#	Article	IF	CITATIONS
73	A Review and Perspective on Control Charting with Image Data. Journal of Quality Technology, 2011, 43, 83-98.	2.5	113
74	A Note on the ARL of Two-Sided Bernoulli-Based CUSUM Control Charts. Journal of Quality Technology, 2011, 43, 43-49.	2.5	15
7 5	Comparison of the early aberration reporting system (EARS) W2 methods to an adaptive threshold method. Statistics in Medicine, 2011, 30, 489-504.	1.6	8
76	Comments on †Some methodological issues in biosurveillance'. Statistics in Medicine, 2011, 30, 430-433.	1.6	2
77	A Review and perspective on surveillance of Bernoulli processes. Quality and Reliability Engineering International, 2011, 27, 735-752.	2.3	70
78	Control Charts for Poisson Count Data with Varying Sample Sizes. Journal of Quality Technology, 2010, 42, 260-275.	2.5	59
79	Estimating the Standard Deviation in Quality-Control Applications. Journal of Quality Technology, 2010, 42, 348-357.	2.5	75
80	An Evaluation of the Double Exponentially Weighted Moving Average Control Chart. Communications in Statistics Part B: Simulation and Computation, 2010, 39, 933-949.	1.2	35
81	Discussion on "Life and Work of Bhaskar Kumar Ghosh―by Pranab Kumar Sen. Sequential Analysis, 2010, 29, 19-21.	0.5	0
82	The monitoring of simple linear regression profiles with two observations per sample. Journal of Applied Statistics, 2010, 37, 1249-1263.	1.3	66
83	Discussion on "Optimal Sequential Surveillance for Finance, Public Health, and Other Areas―by Marianne Frisén. Sequential Analysis, 2009, 28, 338-341.	0.5	1
84	A Conversation with Donald J. Wheeler. Quality Engineering, 2009, 21, 357-365.	1.1	0
85	A comparison of surveillance methods for small incidence rates. Statistics in Medicine, 2008, 27, 1225-1247.	1.6	48
86	Detecting a rate increase using a Bernoulli scan statistic. Statistics in Medicine, 2008, 27, 2555-2575.	1.6	36
87	Some relationships between gage R&R criteria. Quality and Reliability Engineering International, 2008, 24, 99-106.	2.3	45
88	A oneâ€sided MEWMA chart for health surveillance. Quality and Reliability Engineering International, 2008, 24, 503-518.	2.3	64
89	An Overview of Six Sigma. International Statistical Review, 2008, 76, 329-346.	1.9	187
90	A Note on the Poisson Likelihood Ratio Test Statistic for Kulldorff's Scan Methods. Communications in Statistics - Theory and Methods, 2008, 37, 998-1001.	1.0	5

#	Article	IF	Citations
91	Performance Metrics for Surveillance Schemes. Quality Engineering, 2008, 20, 451-464.	1.1	43
92	Performance comparison of some likelihood ratio-based statistical surveillance methods. Journal of Applied Statistics, 2008, 35, 783-798.	1.3	15
93	Optimal Monitoring of Multivariate Data for Fault Patterns. Journal of Quality Technology, 2007, 39, 159-172.	2.5	26
94	Use of the local Knox statistic for the prospective monitoring of disease occurrences in space and time. Statistics in Medicine, 2007, 26, 1579-1593.	1.6	16
95	Statistical monitoring of heteroscedastic dose-response profiles from high-throughput screening. Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12, 216-235.	1.4	59
96	Current research on profile monitoring. Production, 2007, 17, 420-425.	1.3	260
97	Effects of Parameter Estimation on Control Chart Properties: A Literature Review. Journal of Quality Technology, 2006, 38, 349-364.	2.5	460
98	The Use of Control Charts in Health-Care and Public-Health Surveillance. Journal of Quality Technology, 2006, 38, 89-104.	2.5	458
99	Performance evaluation of two methods for online monitoring of linear calibration profiles. International Journal of Production Research, 2006, 44, 1927-1942.	7.5	141
100	The most-cited statistical papers. Journal of Applied Statistics, 2005, 32, 461-474.	1.3	74
101	The Inertial Properties of Quality Control Charts. Technometrics, 2005, 47, 425-436.	1.9	118
102	Using Control Charts to Monitor Process and Product Quality Profiles. Journal of Quality Technology, 2004, 36, 309-320.	2.5	426
103	A Review and Analysis of the Mahalanobis—Taguchi System. Technometrics, 2003, 45, 1-15.	1.9	131
104	On the Monitoring of Linear Profiles. Journal of Quality Technology, 2003, 35, 317-328.	2.5	411
105	Evaluating and Improving the Synthetic Control Chart. Journal of Quality Technology, 2002, 34, 200-208.	2.5	148
106	ON THE ECONOMIC DESIGN OF MULTIVARIATE CONTROL CHARTS. Communications in Statistics - Theory and Methods, 2002, 31, 1665-1673.	1.0	13
107	Title is missing!. IIE Transactions, 2000, 32, 537-549.	2.1	0
108	Controversies and Contradictions in Statistical Process Control. Journal of Quality Technology, 2000, 32, 341-350.	2.5	391

#	Article	IF	CITATIONS
109	The State of Statistical Process Control as We Proceed into the 21st Century. Journal of the American Statistical Association, 2000, 95, 992-998.	3.1	180
110	A New SPC Monitoring Method: The ARMA Chart. Technometrics, 2000, 42, 399-410.	1.9	122
111	Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations. IIE Transactions, 2000, 32, 537-549.	2.1	60
112	A New SPC Monitoring Method: The ARMA Chart. Technometrics, 2000, 42, 399.	1.9	32
113	The State of Statistical Process Control as We Proceed into the 21st Century. Journal of the American Statistical Association, 2000, 95, 992.	3.1	41
114	A simple probabilistic representation of the product-sum fuzzy logic controller. Stochastic Models, 1999, 15, 201-225.	0.3	0
115	Research Issues and Ideas in Statistical Process Control. Journal of Quality Technology, 1999, 31, 376-386.	2.5	502
116	Adapting control charts for the preliminary analysis of multivariate observations. Communications in Statistics Part B: Simulation and Computation, 1998, 27, 953-979.	1.2	23
117	The Performance of Bootstrap Control Charts. Journal of Quality Technology, 1998, 30, 362-375.	2.5	54
118	Control Charts Based on Attribute Data: Bibliography and Review. Journal of Quality Technology, 1997, 29, 172-183.	2.5	230
119	A runs rule alternative to level crossings in statistical process control. Journal of Statistical Computation and Simulation, 1997, 59, 315-331.	1.2	2
120	A Review of Statistical and Fuzzy Quality Control Charts Based on Categorical Data., 1997,, 83-89.		30
121	Alarm rates for quality control charts. Statistics and Probability Letters, 1995, 24, 219-224.	0.7	68
122	Statistical process control with several components of common cause variability. IIE Transactions, 1995, 27, 757-764.	2.1	55
123	A Probabilistic and Statistical View of Fuzzy Methods. Technometrics, 1995, 37, 249-261.	1.9	145
124	A Probabilistic and Statistical View of Fuzzy Methods. Technometrics, 1995, 37, 249.	1.9	72
125	A study of parabolic control limits for the ewma control chart. Communications in Statistics Part B: Simulation and Computation, 1994, 23, 17-26.	1.2	0
126	The Maximum Size of Standardized and Internally Studentized Residuals in Regression Analysis. American Statistician, 1994, 48, 111-113.	1.6	13

#	Article	IF	CITATIONS
127	An Analysis of Taguchi's On-Line Quality-Monitoring Procedures for Attributes. Technometrics, 1993, 35, 53-60.	1.9	30
128	THE STATISTICAL DESIGN OF CUSUM CHARTS. Quality Engineering, 1993, 5, 559-570.	1.1	111
129	A Review and Analysis of Cause-Selecting Control Charts. Journal of Quality Technology, 1993, 25, 161-169.	2.5	218
130	Improvement of an Industrial Thermostat Using Designed Experiments. Journal of Quality Technology, 1993, 25, 262-270.	2.5	44
131	An Analysis of Taguchi's On-Line Quality-Monitoring Procedures for Attributes. Technometrics, 1993, 35, 53.	1.9	12
132	The effect of autocorrelation on the retrospective $\langle i \rangle X \langle i \rangle$ -chart. Journal of Statistical Computation and Simulation, 1992, 40, 29-42.	1.2	108
133	The Use (and Misuse) of False Alarm Probabilities in Control Chart Design. , 1992, , 155-168.		27
134	Performance of the zone control chart. Communications in Statistics - Theory and Methods, 1990, 19, 1581-1587.	1.0	37
135	An Analysis of Taguchi's On-Line Process-Control Procedure Under a Random-Walk Model. Technometrics, 1989, 31, 401-413.	1.9	44
136	An Analysis of Taguchi's On-Line Process-Control Procedure under a Random-Walk Model. Technometrics, 1989, 31, 401.	1.9	31
137	Performance of the Control Chart Trend Rule under Linear Shift. Journal of Quality Technology, 1988, 20, 260-262.	2.5	80
138	Exact Results for Shewhart Control Charts With Supplementary Runs Rules. Technometrics, 1987, 29, 393-399.	1.9	342
139	Exact Results for Shewhart Control Charts with Supplementary Runs Rules. Technometrics, 1987, 29, 393.	1.9	153
140	The Design of CUSUM Quality Control Charts. Journal of Quality Technology, 1986, 18, 99-102.	2.5	85
141	Weaknesses of the Economic Design of Control Charts. Technometrics, 1986, 28, 408.	1.9	163
142	Multivariate CUSUM Quality-Control Procedures. Technometrics, 1985, 27, 285-292.	1.9	289
143	The Statistical Design of Quality Control Charts. Journal of the Royal Statistical Society: Series D (the) Tj ${\sf ETQq1\ 1}$	0,784314	rgBT /Over
144	Multivariate CUSUM Quality-Control Procedures. Technometrics, 1985, 27, 285.	1.9	72

#	Article	IF	CITATIONS
145	On the Markov Chain Approach to the Two-Sided CUSUM Procedure. Technometrics, 1984, 26, 41-46.	1.9	67
146	On the Markov Chain Approach to the Two-Sided CUSUM Procedure. Technometrics, 1984, 26, 41.	1.9	19
147	The Distribution of the Run Length of One-Sided CUSUM Procedures for Continuous Random Variables. Technometrics, 1983, 25, 295-301.	1.9	120
148	The Distribution of the Run Length of One-Sided CUSUM Procedures for Continuous Random Variables. Technometrics, 1983, 25, 295.	1.9	40
149	Bridging the Gap between Theory and Practice in Basic Statistical Process Monitoring. Quality Engineering, 0, , 00-00.	1.1	12