Liangli Lucy Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/716290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Free Radical Scavenging Properties of Wheat Extracts. Journal of Agricultural and Food Chemistry, 2002, 50, 1619-1624.	2.4	788
2	High-Throughput Relative DPPH Radical Scavenging Capacity Assay. Journal of Agricultural and Food Chemistry, 2006, 54, 7429-7436.	2.4	285
3	Carotenoid, Tocopherol, Phenolic Acid, and Antioxidant Properties of Maryland-Grown Soft Wheat. Journal of Agricultural and Food Chemistry, 2005, 53, 6649-6657.	2.4	270
4	Antioxidant Properties of Bran Extracts from "Akron―Wheat Grown at Different Locations. Journal of Agricultural and Food Chemistry, 2003, 51, 1566-1570.	2.4	252
5	Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chemistry, 2014, 142, 269-275.	4.2	251
6	Fatty Acid Composition and Antioxidant Properties of Cold-Pressed Marionberry, Boysenberry, Red Raspberry, and Blueberry Seed Oils. Journal of Agricultural and Food Chemistry, 2005, 53, 566-573.	2.4	241
7	Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chemistry, 2005, 91, 723-729.	4.2	239
8	Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chemistry, 2007, 100, 990-997.	4.2	221
9	Phytochemicals and Antioxidant Properties in Wheat Bran. Journal of Agricultural and Food Chemistry, 2004, 52, 6108-6114.	2.4	216
10	Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chemistry, 2011, 128, 391-399.	4.2	193
11	Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT - Food Science and Technology, 2006, 39, 1155-1162.	2.5	190
12	Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chemistry, 2011, 126, 1269-1277.	4.2	188
13	Antioxidant properties of hard winter wheat extracts. Food Chemistry, 2002, 78, 457-461.	4.2	166
14	Chemical Compositions, Antioxidant Capacities, and Antiproliferative Activities of Selected Fruit Seed Flours. Journal of Agricultural and Food Chemistry, 2006, 54, 3773-3778.	2.4	155
15	Free Radical Scavenging Properties of Conjugated Linoleic Acids. Journal of Agricultural and Food Chemistry, 2001, 49, 3452-3456.	2.4	151
16	Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT - Food Science and Technology, 2007, 40, 552-557.	2.5	142
17	Novel Fluorometric Assay for Hydroxyl Radical Scavenging Capacity (HOSC) Estimation. Journal of Agricultural and Food Chemistry, 2006, 54, 617-626.	2.4	137
18	Chemical profiling of triacylglycerols and diacylglycerols in cow milk fat by ultra-performance convergence chromatography combined with a quadrupole time-of-flight mass spectrometry. Food Chemistry, 2014, 143, 199-204.	4.2	121

#	Article	IF	CITATIONS
19	The Science behind Microgreens as an Exciting New Food for the 21st Century. Journal of Agricultural and Food Chemistry, 2018, 66, 11519-11530.	2.4	121
20	Antioxidant properties and phytochemical composition of China-grown pomegranate seeds. Food Chemistry, 2012, 132, 1457-1464.	4.2	119
21	Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 847-854.	0.8	117
22	lsolation and Characterization of Two Flavonoids, Engeletin and Astilbin, from the Leaves of Engelhardia roxburghiana and Their Potential Anti-inflammatory Properties. Journal of Agricultural and Food Chemistry, 2011, 59, 4562-4569.	2.4	115
23	Inhibitory effect of Chardonnay and black raspberry seed extracts on lipid oxidation in fish oil and their radical scavenging and antimicrobial properties. Food Chemistry, 2007, 104, 1065-1073.	4.2	114
24	Zein-caseinate composite nanoparticles for bioactive delivery using curcumin as a probe compound. Food Hydrocolloids, 2018, 83, 25-35.	5.6	114
25	Effects of Genotype and Environment on the Antioxidant Properties of Hard Winter Wheat Bran. Journal of Agricultural and Food Chemistry, 2006, 54, 5313-5322.	2.4	108
26	Anthocyanin and glucosinolate occurrences in the roots of Chinese red radish (Raphanus sativus L.), and their stability to heat and pH. Food Chemistry, 2012, 133, 1569-1576.	4.2	107
27	Phenolic Acid, Tocopherol and Carotenoid Compositions, and Antioxidant Functions of Hard Red Winter Wheat Bran. Journal of Agricultural and Food Chemistry, 2005, 53, 3916-3922.	2.4	106
28	Antioxidant Properties of Bran Extracts from Trego Wheat Grown at Different Locations. Journal of Agricultural and Food Chemistry, 2004, 52, 1112-1117.	2.4	103
29	Structural, Thermal, and Anti-inflammatory Properties of a Novel Pectic Polysaccharide from Alfalfa (<i>Medicago sativa</i> L.) Stem. Journal of Agricultural and Food Chemistry, 2015, 63, 3219-3228.	2.4	103
30	Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chemistry, 2019, 286, 8-16.	4.2	103
31	Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chemistry, 2012, 132, 1442-1450.	4.2	97
32	Effects of Postharvest Treatment and Heat Stress on Availability of Wheat Antioxidants. Journal of Agricultural and Food Chemistry, 2006, 54, 5623-5629.	2.4	94
33	Soy and Gut Microbiota: Interaction and Implication for Human Health. Journal of Agricultural and Food Chemistry, 2016, 64, 8695-8709.	2.4	92
34	In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties. LWT - Food Science and Technology, 2006, 39, 1087-1092.	2.5	90
35	Myrosinase-dependent and $\hat{a} \in \hat{i}$ independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Frontiers in Plant Science, 2015, 6, 831.	1.7	90
36	Antioxidant Properties, Phytochemical Composition, and Antiproliferative Activity of Maryland-Grown Soybeans with Colored Seed Coats. Journal of Agricultural and Food Chemistry, 2009, 57, 11174-11185.	2.4	81

#	Article	IF	CITATIONS
37	Gypenosides Reduced the Risk of Overweight and Insulin Resistance in C57BL/6J Mice through Modulating Adipose Thermogenesis and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2017, 65, 9237-9246.	2.4	81
38	Comprehensive characterization of <i>C</i> -glycosyl flavones in wheat (<i>Triticum aestivum</i> L.) germ using UPLC-PDA-ESI/HRMS ⁿ and mass defect filtering. Journal of Mass Spectrometry, 2016, 51, 914-930.	0.7	80
39	Modified soluble dietary fiber from black bean coats with its rheological and bile acid binding properties. Food Hydrocolloids, 2017, 62, 94-101.	5.6	79
40	Effects of Solid-State Enzymatic Treatments on the Antioxidant Properties of Wheat Bran. Journal of Agricultural and Food Chemistry, 2006, 54, 9032-9045.	2.4	77
41	Anti-Inflammatory and Antiproliferative Activities of Trifolirhizin, a Flavonoid from <i>Sophora flavescens</i> Roots. Journal of Agricultural and Food Chemistry, 2009, 57, 4580-4585.	2.4	77
42	Differentiation of the Four Major Species of Cinnamons (<i>C. burmannii</i> , <i>C. verum</i> , <i>C.) Tj ETQq0 0 Method. Journal of Agricultural and Food Chemistry, 2014, 62, 2516-2521.</i>	0 rgBT /O 2.4	verlock 10 Tf 77
43	Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2016, 64, 9161-9171.	2.4	76
44	Chromatographic fingerprint analysis for evaluation of Ginkgo biloba products. Analytical and Bioanalytical Chemistry, 2007, 389, 251-261.	1.9	73
45	Identification and Quantification of Phytochemical Composition and Anti-inflammatory and Radical Scavenging Properties of Methanolic Extracts of Chinese Propolis. Journal of Agricultural and Food Chemistry, 2012, 60, 12403-12410.	2.4	73
46	Conjugated Linoleic Acid Isomers Differ in Their Free Radical Scavenging Properties. Journal of Agricultural and Food Chemistry, 2002, 50, 4135-4140.	2.4	68
47	Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 6599-6607.	2.4	66
48	Novel Chitosan-Derived Nanomaterials and Their Micelle-Forming Properties. Journal of Agricultural and Food Chemistry, 2006, 54, 8409-8416.	2.4	65
49	Antioxidant properties and phenolic, isoflavone, tocopherol and carotenoid composition of Maryland-grown soybean lines with altered fatty acid profiles. Food Chemistry, 2009, 114, 20-27.	4.2	65
50	Application of electron spin resonance (ESR) spectrometry in nutraceutical and food research. Molecular Nutrition and Food Research, 2008, 52, 62-78.	1.5	64
51	Effects of Baking Conditions, Dough Fermentation, and Bran Particle Size on Antioxidant Properties of Whole-Wheat Pizza Crusts. Journal of Agricultural and Food Chemistry, 2009, 57, 832-839.	2.4	64
52	A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans. Food Chemistry, 2012, 135, 2789-2795.	4.2	64
53	Antioxidant properties of bran extracts from `Platte' wheat grown at different locations. Food Chemistry, 2005, 90, 311-316.	4.2	61
54	Effect of Processing on Phenolic Composition of Dough and Bread Fractions Made from Refined and Whole Wheat Flour of Three Wheat Varieties. Journal of Agricultural and Food Chemistry, 2014, 62, 10431-10436.	2.4	57

#	Article	IF	CITATIONS
55	Metabolomic Assessment Reveals an Elevated Level of Glucosinolate Content in CaCl ₂ Treated Broccoli Microgreens. Journal of Agricultural and Food Chemistry, 2015, 63, 1863-1868.	2.4	57
56	Phytochemical Composition, Anti-inflammatory, and Antiproliferative Activity of Whole Wheat Flour. Journal of Agricultural and Food Chemistry, 2012, 60, 2129-2135.	2.4	56
57	LC/UV/MS-MRM for the simultaneous determination of water-soluble vitamins in multi-vitamin dietary supplements. Analytical and Bioanalytical Chemistry, 2007, 387, 2441-2448.	1.9	53
58	Identification and Quantification of Phytochemical Composition and Anti-inflammatory, Cellular Antioxidant, and Radical Scavenging Activities of 12 Plantago Species. Journal of Agricultural and Food Chemistry, 2013, 61, 6693-6702.	2.4	52
59	Interactions Between Food and Gut Microbiota: Impact on Human Health. Annual Review of Food Science and Technology, 2019, 10, 389-408.	5.1	52
60	Single-Laboratory Validation of a High-Performance Liquid Chromatographic-Diode Array Detector-Fluorescence Detector/Mass Spectrometric Method for Simultaneous Determination of Water-Soluble Vitamins in Multivitamin Dietary Tablets. Journal of AOAC INTERNATIONAL, 2009, 92, 680-688.	0.7	51
61	Two new saponins from tetraploid jiaogulan (Gynostemma pentaphyllum), and their anti-inflammatory and α-glucosidase inhibitory activities. Food Chemistry, 2013, 141, 3606-3613.	4.2	50
62	Fatty Acid Composition, Antioxidant Properties, and Antiproliferative Capacity of Selected Coldâ€Pressed Seed Flours. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 457-464.	0.8	49
63	Elucidation of the mechanism of enzymatic browning inhibition by sodium chlorite. Food Chemistry, 2008, 110, 847-851.	4.2	49
64	Differentiation of Whole Grain from Refined Wheat (T. aestivum) Flour Using Lipid Profile of Wheat Bran, Germ, and Endosperm with UHPLC-HRAM Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2015, 63, 6189-6211.	2.4	49
65	Fatty Acid Esters of 3-Monochloropropanediol: A Review. Annual Review of Food Science and Technology, 2019, 10, 259-284.	5.1	49
66	Chemical composition and anti-proliferative and anti-inflammatory effects of the leaf and whole-plant samples of diploid and tetraploid Gynostemma pentaphyllum (Thunb.) Makino. Food Chemistry, 2012, 132, 125-133.	4.2	48
67	Flow Injection Mass Spectral Fingerprints Demonstrate Chemical Differences in Rio Red Grapefruit with Respect to Year, Harvest Time, and Conventional versus Organic Farming. Journal of Agricultural and Food Chemistry, 2010, 58, 4545-4553.	2.4	45
68	Triacylglycerol compositions of sunflower, corn and soybean oils examined with supercritical CO2 ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Food Chemistry, 2017, 218, 569-574.	4.2	45
69	Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers. Food Chemistry, 2013, 141, 1166-1174.	4.2	44
70	Free Radical Mediated Formation of 3-Monochloropropanediol (3-MCPD) Fatty Acid Diesters. Journal of Agricultural and Food Chemistry, 2013, 61, 2548-2555.	2.4	44
71	Mitigation of 3-Monochloro-1,2-propanediol Ester Formation by Radical Scavengers. Journal of Agricultural and Food Chemistry, 2016, 64, 5887-5892.	2.4	44
72	Bioactive Components and Health Beneficial Properties of Whole Wheat Foods. Journal of Agricultural and Food Chemistry, 2020, 68, 12904-12915.	2.4	44

#	Article	IF	CITATIONS
73	Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis. Food Chemistry, 2014, 154, 262-268.	4.2	42
74	Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Research International, 2017, 99, 755-761.	2.9	42
75	Effect of genotype, environment, and their interaction on phytochemical compositions and antioxidant properties of soft winter wheat flour. Food Chemistry, 2013, 138, 454-462.	4.2	41
76	Formation of 3-Monochloro-1,2-propanediol (3-MCPD) Di- and Monoesters from Tristearoylglycerol (TSG) and the Potential Catalytic Effect of Fe ²⁺ and Fe ³⁺ . Journal of Agricultural and Food Chemistry, 2015, 63, 1839-1848.	2.4	41
77	Fingerprinting profile of polysaccharides from Lycium barbarum using multiplex approaches and chemometrics. International Journal of Biological Macromolecules, 2015, 78, 230-237.	3.6	41
78	Building a Resilient, Sustainable, and Healthier Food Supply Through Innovation and Technology. Annual Review of Food Science and Technology, 2021, 12, 1-28.	5.1	41
79	Glucosinolates in <i>Brassica</i> Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake. Annual Review of Food Science and Technology, 2021, 12, 485-511.	5.1	41
80	Nontargeted Metabolomic Study on Variation of Phenolics in Different Cranberry Cultivars Using UPLC-IM – HRMS. Journal of Agricultural and Food Chemistry, 2018, 66, 12206-12216.	2.4	40
81	Partial Least-Squares-Discriminant Analysis Differentiating Chinese Wolfberries by UPLC–MS and Flow Injection Mass Spectrometric (FIMS) Fingerprints. Journal of Agricultural and Food Chemistry, 2014, 62, 9073-9080.	2.4	38
82	Two Novel Anti-Inflammatory 21-Nordammarane Saponins from Tetraploid Jiaogulan (Gynostemma) Tj ETQq0 0	0 rgBT /Ov 2.4	verlgck 10 Tf 5
83	Characterization of a Novel Alkali-Soluble Heteropolysaccharide from Tetraploid <i>Gynostemma pentaphyllum</i> Makino and Its Potential Anti-inflammatory and Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 3783-3790.	2.4	37
84	Dietary Intake of Structured Lipids with Different Contents of Medium hain Fatty Acids on Obesity Prevention in C57BL/6J Mice. Journal of Food Science, 2017, 82, 1968-1977.	1.5	37
85	Necroptosis in 3-chloro-1, 2-propanediol (3-MCPD)-dipalmitate-induced acute kidney injury in vivo and its repression by miR-223-3p. Toxicology, 2018, 406-407, 33-43.	2.0	37
86	Characterization of lipopolysaccharide-stimulated cytokine expression in macrophages and monocytes. Inflammation Research, 2012, 61, 1329-1338.	1.6	36
87	Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT - Food Science and Technology, 2013, 54, 521-527.	2.5	36
88	Preparation of five 3â€ <scp>MCPD</scp> fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice. Journal of the Science of Food and Agriculture, 2017, 97, 841-848.	1.7	36
89	Enhancement of aqueous stability of allyl isothiocyanate using nanoemulsions prepared by an emulsion inversion point method. Journal of Colloid and Interface Science, 2015, 438, 130-137.	5.0	34
90	Triacylglycerols compositions, soluble and bound phenolics of red sorghums, and their radical scavenging and anti-inflammatory activities. Food Chemistry, 2021, 340, 128123.	4.2	34

6

#	Article	IF	CITATIONS
91	Characterization of flavonol mono-, di-, tri- and tetra- O -glycosides by ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and its application for identification of flavonol glycosides in Viola tianschanica. Journal of Pharmaceutical and Biomedical Analysis, 2017, 142, 113-124.	1.4	33
92	Polyphenolic Characterization and Antioxidant Activity of Malus domestica and Prunus domestica Cultivars from Costa Rica. Foods, 2018, 7, 15.	1.9	33
93	Inhibition of Tumor Growth by Dietary Indole-3-Carbinol in a Prostate Cancer Xenograft Model May Be Associated with Disrupted Gut Microbial Interactions. Nutrients, 2019, 11, 467.	1.7	33
94	Inhibitory Effects of (S)- and (R)-6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic Acids on Tyrosinase Activity. Journal of Agricultural and Food Chemistry, 2003, 51, 2344-2347.	2.4	32
95	Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa). Planta Medica, 2016, 82, 250-262.	0.7	32
96	Formation of 3-MCPD Fatty Acid Esters from Monostearoyl Glycerol and the Thermal Stability of 3-MCPD Monoesters. Journal of Agricultural and Food Chemistry, 2016, 64, 8918-8926.	2.4	32
97	Inhibitory Effect of Piceatannol on TNF-α-Mediated Inflammation and Insulin Resistance in 3T3-L1 Adipocytes. Journal of Agricultural and Food Chemistry, 2017, 65, 4634-4641.	2.4	32
98	Polyphenolic Characterization, Antioxidant, and Cytotoxic Activities of Mangifera indica Cultivars from Costa Rica. Foods, 2019, 8, 384.	1.9	32
99	Chemical Composition of 13 Commercial Soybean Samples and Their Antioxidant and Anti-inflammatory Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 10027-10034.	2.4	29
100	Piceatannol Protects Human Retinal Pigment Epithelial Cells against Hydrogen Peroxide Induced Oxidative Stress and Apoptosis through Modulating PI3K/Akt Signaling Pathway. Nutrients, 2019, 11, 1515.	1.7	29
101	Characterization of a heteropolysaccharide isolated from diploid Gynostemma pentaphyllum Makino. Carbohydrate Polymers, 2013, 92, 2111-2117.	5.1	27
102	GLS-Finder: A Platform for Fast Profiling of Glucosinolates in <i>Brassica</i> Vegetables. Journal of Agricultural and Food Chemistry, 2016, 64, 4407-4415.	2.4	27
103	Differentiation of bread made with whole grain and refined wheat (T. aestivum) flour using LC/MS-based chromatographic fingerprinting and chemometric approaches. Journal of Food Composition and Analysis, 2016, 47, 92-100.	1.9	27
104	Interesterified trans-free fats rich in sn-2 nervonic acid prepared usingÂAcer truncatum oil, palm stearin and palm kernel oil, and theirÂphysicochemical properties. LWT - Food Science and Technology, 2017, 76, 156-163.	2.5	27
105	Novel composite gels of gelatin and soluble dietary fiber from black bean coats with interpenetrating polymer networks. Food Hydrocolloids, 2018, 83, 72-78.	5.6	27
106	FlavonQ: An Automated Data Processing Tool for Profiling Flavone and Flavonol Glycosides with Ultra-High-Performance Liquid Chromatography–Diode Array Detection–High Resolution Accurate Mass–Mass Spectrometry. Analytical Chemistry, 2015, 87, 9974-9981.	3.2	26
107	Components characterization of total tetraploid jiaogulan (Gynostemma pentaphyllum) saponin and its cholesterol-lowering properties. Journal of Functional Foods, 2016, 23, 542-555.	1.6	26
108	Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets. PLoS ONE, 2016, 11, e0164894.	1.1	25

#	Article	IF	CITATIONS
109	Absorption, Distribution, Metabolism and Excretion of 3-MCPD 1-Monopalmitate after Oral Administration in Rats. Journal of Agricultural and Food Chemistry, 2017, 65, 2609-2614.	2.4	25
110	The impact of dietary sn-2 palmitic triacylglycerols in combination with docosahexaenoic acid or arachidonic acid on lipid metabolism and host faecal microbiota composition in Sprague Dawley rats. Food and Function, 2017, 8, 1793-1802.	2.1	25
111	Physicochemical Properties of <i>Acer truncatum</i> Seed Oil Extracted Using Supercritical Carbon Dioxide. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 779-786.	0.8	25
112	Valorization of Soy Whey Wastewater: How Epigallocatechin-3-gallate Regulates Protein Precipitation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15504-15513.	3.2	25
113	Polysaccharides-protein interaction of psyllium and whey protein with their texture and bile acid binding activity. International Journal of Biological Macromolecules, 2019, 126, 215-220.	3.6	25
114	Discrimination Among <i>Panax</i> Species Using Spectral Fingerprinting. Journal of AOAC INTERNATIONAL, 2011, 94, 1411-1421.	0.7	24
115	Chemical profiling of glucosinolates in cruciferous vegetables-based dietary supplements using ultra-high performance liquid chromatography coupled to tandem high resolution mass spectrometry. Journal of Food Composition and Analysis, 2017, 61, 67-72.	1.9	24
116	Thermally treated soya bean oleosomes: the changes in their stability and associated proteins. International Journal of Food Science and Technology, 2020, 55, 229-238.	1.3	24
117	Effects of Sulfation on the Physicochemical and Functional Properties of Psyllium. Journal of Agricultural and Food Chemistry, 2010, 58, 172-179.	2.4	23
118	Rapid detection of milk adulteration using intact protein flow injection mass spectrometric fingerprints combined with chemometrics. Food Chemistry, 2018, 240, 573-578.	4.2	23
119	Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses. Food Chemistry, 2020, 309, 125660.	4.2	23
120	Single-laboratory validation of a high-performance liquid chromatographic-diode array detector-fluorescence detector/mass spectrometric method for simultaneous determination of water-soluble vitamins in multivitamin dietary tablets. Journal of AOAC INTERNATIONAL, 2009, 92, 680-7.	0.7	23
121	Acid treatment to improve psyllium functionality. Journal of Functional Foods, 2009, 1, 44-49.	1.6	22
122	Flow Injection Mass Spectroscopic Fingerprinting and Multivariate Analysis for Differentiation of Three Panax Species. Journal of AOAC INTERNATIONAL, 2011, 94, 90-99.	0.7	22
123	3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis <i>In Vivo</i> via JNK/p53 Pathways. Toxicological Sciences, 2016, 151, 181-192.	1.4	22
124	Development of a Comprehensive Flavonoid Analysis Computational Tool for Ultrahigh-Performance Liquid Chromatography-Diode Array Detection-High-Resolution Accurate Mass-Mass Spectrometry Data. Analytical Chemistry, 2017, 89, 7388-7397.	3.2	22
125	Effects of Hydroxypropylation on the Functional Properties of Psyllium. Journal of Agricultural and Food Chemistry, 2010, 58, 1615-1621.	2.4	21
126	Cationic β-lactoglobulin nanoparticles as a bioavailability enhancer: Comparison between ethylenediamine and polyethyleneimine as cationizers. Food Chemistry, 2014, 159, 333-342.	4.2	21

#	Article	IF	CITATIONS
127	Technical note: Nontargeted detection of adulterated plant proteins in raw milk by UPLC-quadrupole time-of-flight mass spectrometric proteomics combined with chemometrics. Journal of Dairy Science, 2017, 100, 6980-6986.	1.4	21
128	Chemical Compositions of Cold-Pressed Broccoli, Carrot, and Cucumber Seed Flours and Their in Vitro Gut Microbiota Modulatory, Anti-inflammatory, and Free Radical Scavenging Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 9309-9317.	2.4	21
129	Effects of Differences in Resistant Starch Content of Rice on Intestinal Microbial Composition. Journal of Agricultural and Food Chemistry, 2021, 69, 8017-8027.	2.4	21
130	Differentiating Organically and Conventionally Grown Oregano Using Ultraperformance Liquid Chromatography Mass Spectrometry (UPLC-MS), Headspace Gas Chromatography with Flame Ionization Detection (Headspace-GC-FID), and Flow Injection Mass Spectrum (FIMS) Fingerprints Combined with Multivariate Data Analysis. Journal of Agricultural and Food Chemistry, 2014, 62, 8075-8084.	2.4	20
131	Utility of Hesperidinase for Food Function Research: Enzymatic Digestion of Botanical Extracts Alters Cellular Antioxidant Capacities and Anti-inflammatory Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 8640-8647.	2.4	20
132	Flavonoids and Ellagitannins Characterization, Antioxidant and Cytotoxic Activities of Phyllanthus acuminatus Vahl. Plants, 2017, 6, 62.	1.6	20
133	Toxicokinetics and Metabolism of 3-Monochloropropane 1,2-Diol Dipalmitate in Sprague Dawley Rats. Journal of Agricultural and Food Chemistry, 2018, 66, 11672-11680.	2.4	20
134	Chemical profile and in vitro gut microbiota modulatory, anti-inflammatory and free radical scavenging properties of chrysanthemum morifolium cv. Fubaiju. Journal of Functional Foods, 2019, 58, 114-122.	1.6	20
135	Triacylglycerol, fatty acid, and phytochemical profiles in a new red sorghum variety (Ji Liang No. 1) and its antioxidant and antiâ€inflammatory properties. Food Science and Nutrition, 2019, 7, 949-958.	1.5	20
136	Study the effects of drying processes on chemical compositions in daylily flowers using flow injection mass spectrometric fingerprinting method and chemometrics. Food Research International, 2017, 102, 493-503.	2.9	19
137	Effects of Rice with Different Amounts of Resistant Starch on Mice Fed a High-Fat Diet: Attenuation of Adipose Weight Gain. Journal of Agricultural and Food Chemistry, 2020, 68, 13046-13055.	2.4	19
138	A novel fat replacer composed by gelatin and soluble dietary fibers from black bean coats with its application in meatballs. LWT - Food Science and Technology, 2020, 122, 109000.	2.5	19
139	A LC/UV/Vis method for determination of cyanocobalamin (VB12) in multivitamin dietary supplements with on-line sample clean-up. Analytical Methods, 2010, 2, 1171.	1.3	18
140	A Non-targeted Approach to Chemical Discrimination Between Green Tea Dietary Supplements and Green Tea Leaves by HPLC/MS. Journal of AOAC INTERNATIONAL, 2011, 94, 487-497.	0.7	18
141	Differentiation of Aurantii Fructus Immaturus from Poniciri Trifoliatae Fructus Immaturus using flow-injection mass spectrometric (FIMS) metabolic fingerprinting method combined with chemometrics. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107, 251-257.	1.4	18
142	Genotype, environment, and their interactions on the phytochemical compositions and radical scavenging properties of soft winter wheat bran. LWT - Food Science and Technology, 2015, 60, 277-283.	2.5	18
143	Authenticating Raw from Reconstituted Milk Using Fourier Transform Infrared Spectroscopy and Chemometrics. Journal of Food Quality, 2019, 2019, 1-6.	1.4	18
144	Profiling of Polyphenols and Glucosinolates in Kale and Broccoli Microgreens Grown under Chamber and Windowsill Conditions by Ultrahigh-Performance Liquid Chromatography High-Resolution Mass Spectrometry. ACS Food Science & Technology, 2022, 2, 101-113.	1.3	18

#	Article	IF	CITATIONS
145	Phytochemical, Antioxidant, and Antiproliferative Properties of Seed Oil and Flour Extracts of Maryland-Grown Tobacco Cultivars. Journal of Agricultural and Food Chemistry, 2011, 59, 9877-9884.	2.4	17
146	Metabolomic profiling and comparison of major cinnamon species using UHPLC–HRMS. Analytical and Bioanalytical Chemistry, 2020, 412, 7669-7681.	1.9	17
147	Chemical analysis and classification of black pepper (Piper nigrum L.) based on their country of origin using mass spectrometric methods and chemometrics. Food Research International, 2021, 140, 109877.	2.9	17
148	Microbial transglutaminase-induced cross-linking of sodium caseinate as the coating stabilizer of zein nanoparticles. LWT - Food Science and Technology, 2021, 138, 110624.	2.5	17
149	Three new flavanonol glycosides from leaves of Engelhardtia roxburghiana, and their anti-inflammation, antiproliferative and antioxidant properties. Food Chemistry, 2012, 132, 788-798.	4.2	16
150	Preparation of succinylated derivatives of psyllium and their physicochemical and bile acid-binding properties. Food Chemistry, 2012, 132, 1025-1032.	4.2	16
151	Phytochemical composition and antiproliferative activities of bran fraction of ten Maryland-grown soft winter wheat cultivars: Comparison of different radical scavenging assays. Journal of Food Composition and Analysis, 2014, 36, 51-58.	1.9	16
152	Feruloyl dopamine-O-hexosides are efficient marker compounds as orthogonal validation for authentication of black cohosh (Actaea racemosa)—an UHPLC-HRAM-MS chemometrics study. Analytical and Bioanalytical Chemistry, 2017, 409, 2591-2600.	1.9	16
153	The analysis of phenolic compounds in daylily using UHPLC-HRMS ⁿ and evaluation of drying processing method by fingerprinting and metabolomic approaches. Journal of Food Processing and Preservation, 2018, 42, e13325.	0.9	16
154	A high fat, high cholesterol diet leads to changes in metabolite patterns in pigs – A metabolomic study. Food Chemistry, 2015, 173, 171-178.	4.2	15
155	Home food preparation techniques impacted the availability of natural antioxidants and bioactivities in kale and broccoli. Food and Function, 2018, 9, 585-593.	2.1	15
156	The chemical composition of a cold-pressed milk thistle seed flour extract, and its potential health beneficial properties. Food and Function, 2019, 10, 2461-2470.	2.1	15
157	Chemical Composition of Tomato Seed Flours, and Their Radical Scavenging, Anti-Inflammatory and Gut Microbiota Modulating Properties. Molecules, 2021, 26, 1478.	1.7	15
158	Recent Advances in Ultra-High Performance Liquid Chromatography for the Analysis of Traditional Chinese Medicine. Analytical Letters, 2014, 47, 1835-1851.	1.0	14
159	Phytochemical Profile and Antiproliferative Activity of Dough and Bread Fractions Made from Refined and Whole Wheat Flours. Cereal Chemistry, 2015, 92, 271-277.	1.1	13
160	A novel Gynostemma pentaphyllum saponin and its adipogenesis inhibitory effect through modulating Wnt/l²-catenin pathway and cell cycle in mitotic clonal expansion. Journal of Functional Foods, 2015, 17, 552-562.	1.6	13
161	Flow injection mass spectroscopic fingerprinting and multivariate analysis for differentiation of three Panax species. Journal of AOAC INTERNATIONAL, 2011, 94, 90-9.	0.7	13
162	Use of fuzzy chromatography mass spectrometric (FCMS) fingerprinting and chemometric analysis for differentiation of whole-grain and refined wheat (T. aestivum) flour. Analytical and Bioanalytical Chemistry, 2015, 407, 7875-7888.	1.9	12

#	Article	IF	CITATIONS
163	Conjugated linolenic acids and nutraceutical components in Jiaogulan (Gynostemma pentaphyllum) seeds. LWT - Food Science and Technology, 2016, 68, 111-118.	2.5	12
164	Homeâ€based preparation approaches altered the availability of health beneficial components from carrot and blueberry. Food Science and Nutrition, 2017, 5, 793-804.	1.5	12
165	Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water. Food Chemistry, 2018, 244, 246-253.	4.2	12
166	Chemical composition of coldâ€pressed blackberry seed flour extract and its potential healthâ€beneficial properties. Food Science and Nutrition, 2020, 8, 1215-1225.	1.5	12
167	Lipid Compositions and Geographical Discrimination of 94 Geographically Authentic Wheat Samples Based on UPLC-MS with Non-Targeted Lipidomic Approach. Foods, 2021, 10, 10.	1.9	12
168	Indole-3-Carbinol Inhibits Citrobacter rodentium Infection through Multiple Pathways Including Reduction of Bacterial Adhesion and Enhancement of Cytotoxic T Cell Activity. Nutrients, 2020, 12, 917.	1.7	11
169	Methods for Antioxidant Capacity Estimation of Wheat and Wheat-Based Food Products. , 0, , 118-172.		10
170	Immunomodulation activity of alkali extract polysaccharide from Plantago asiatic L. seeds. RSC Advances, 2016, 6, 76312-76317.	1.7	10
171	Reversible Toxic Effects of the Dietary Supplement Indole-3-Carbinol in an Immune Compromised Rodent Model: Intestine as the Main Target. Journal of Dietary Supplements, 2017, 14, 303-322.	1.4	10
172	Fabrication and Characterization of Zein Composite Particles Coated by Caseinate-Pectin Electrostatic Complexes with Improved Structural Stability in Acidic Aqueous Environments. Molecules, 2019, 24, 2535.	1.7	10
173	Dietary <i>sn-</i> 2 palmitic triacylglycerols reduced faecal lipids, calcium contents and altered lipid metabolism in Sprague–Dawley rats. International Journal of Food Sciences and Nutrition, 2019, 70, 474-483.	1.3	10
174	Triacylglycerols and Fatty Acid Compositions of Cucumber, Tomato, Pumpkin, and Carrot Seed Oils by Ultra-Performance Convergence Chromatography Combined with Quadrupole Time-of-Flight Mass Spectrometry. Foods, 2020, 9, 970.	1.9	10
175	Ninety-Day Nephrotoxicity Evaluation of 3-MCPD 1-Monooleate and 1-Monostearate Exposures in Male Sprague Dawley Rats Using Proteomic Analysis. Journal of Agricultural and Food Chemistry, 2020, 68, 2765-2772.	2.4	10
176	Inhibition Mechanism of L-Cysteine on Maillard Reaction by Trapping 5-Hydroxymethylfurfural. Foods, 2021, 10, 1391.	1.9	10
177	Determination of Yohimbine in Yohimbe Bark and Related Dietary Supplements Using UHPLC-UV/MS: Single-Laboratory Validation. Journal of AOAC INTERNATIONAL, 2015, 98, 896-901.	0.7	9
178	A computational tool for accelerated analysis of oligomeric proanthocyanidins in plants. Journal of Food Composition and Analysis, 2017, 56, 124-133.	1.9	9
179	Safety assessment of medium- and long-chain triacylglycerols containing 30% (w/w) medium-chain fatty acids in mice and rats. Regulatory Toxicology and Pharmacology, 2017, 86, 42-48.	1.3	9
180	Modulation of CXC-motif chemokine receptor 7, but not 4, expression is related to migration of the human prostate cancer cell LNCaP: regulation by androgen and inflammatory stimuli. Inflammation Research, 2020, 69, 167-178.	1.6	9

#	Article	IF	CITATIONS
181	Characterization of Maca (Lepidium meyenii/Lepidium peruvianum) Using a Mass Spectral Fingerprinting, Metabolomic Analysis, and Genetic Sequencing Approach. Planta Medica, 2020, 86, 674-685.	0.7	9
182	Quantification of cranberry proanthocyanidins by normalâ€phase highâ€performance liquid chromatography using relative response factors. Phytochemical Analysis, 2020, 31, 874-883.	1.2	9
183	Preharvest UVB Application Increases Glucosinolate Contents and Enhances Postharvest Quality of Broccoli Microgreens. Molecules, 2021, 26, 3247.	1.7	9
184	Chemical Composition Profiling and Biological Activities of Phenolic Compounds in Eleven Red Sorghums. Journal of Agricultural and Food Chemistry, 2021, 69, 9407-9418.	2.4	9
185	Discrimination Among Panax Species Using Spectral Fingerprinting. Journal of AOAC INTERNATIONAL, 2011, 94, 1411-1421.	0.7	9
186	Mass spectroscopic fingerprinting method for differentiation between Scutellaria lateriflora and the germander (Teucrium canadense and T. chamaedrys) species. Journal of AOAC INTERNATIONAL, 2010, 93, 1148-54.	0.7	9
187	Separating four diastereomeric pairs of dihydroflavonol glycosides from Engelhardia roxburghiana using high performance counter-current chromatography. Journal of Chromatography A, 2015, 1383, 79-87.	1.8	8
188	Liposome-like nanocapsules of dual drug-tailed betaine for cancer therapy. International Journal of Pharmaceutics, 2015, 493, 460-465.	2.6	8
189	Application of a computerâ€assisted structure elucidation program for the structural determination of a new terpenoid aldehyde with an unusual skeleton. Magnetic Resonance in Chemistry, 2017, 55, 210-213.	1.1	8
190	Effect of Fatty Acid Chain Length on the Crystallization Behavior of <i>Trans</i> -free Margarine Basestocks during Storage. Journal of Oleo Science, 2017, 66, 353-362.	0.6	8
191	Transcriptional and translationalâ€uncoupling in regulation of the CXCL12 and its receptors CXCR4, 7 in THPâ€1 monocytes and macrophages. Immunity, Inflammation and Disease, 2018, 6, 106-116.	1.3	8
192	Determination of Variance of Secondary Metabolites in Lettuces Grown Under Different Light Sources by Flow Injection Mass Spectrometric (FIMS) Fingerprinting and ANOVA–PCA. Journal of Analysis and Testing, 2018, 2, 312-321.	2.5	8
193	Analysis of cranberry proanthocyanidins using UPLC–ion mobility–high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 3653-3662.	1.9	8
194	Active and Robust Composite Films Based on Gelatin and Gallic Acid Integrated with Microfibrillated Cellulose. Foods, 2021, 10, 2831.	1.9	8
195	Identification of liver <i>CYP51</i> as a gene responsive to circulating cholesterol in a hamster model. Journal of Nutritional Science, 2016, 5, e16.	0.7	7
196	Dose-Dependent Responses of I3C and DIM on T-Cell Activation in the Human T Lymphocyte Jurkat Cell Line. International Journal of Molecular Sciences, 2017, 18, 1409.	1.8	7
197	Authentication of black cohosh (Actaea racemosa) dietary supplements based on chemometric evaluation of hydroxycinnamic acid esters and hydroxycinnamic acid amides. Analytical and Bioanalytical Chemistry, 2019, 411, 7147-7156.	1.9	7
198	Quantification of Total Glucosinolates and Isothiocyanates for Common Brassicaceous Vegetables Consumed in the US Market Using Cyclocondensation and Thiocyanate Ion Measurement Methods. Journal of Analysis and Testing, 2019, 3, 313-321.	2.5	7

#	Article	IF	CITATIONS
199	Current Progresses on Monochloropropane Diol Esters in 2018–2019 and Their Future Research Trends. Journal of Agricultural and Food Chemistry, 2020, 68, 12984-12992.	2.4	7
200	A Novel Zein-Based Composite Nanoparticles for Improving Bioaccessibility and Anti-Inflammatory Activity of Resveratrol. Foods, 2021, 10, 2773.	1.9	7
201	Potential Relationships Between Fatty Acid Compositions and Phytochemicals of Selected Low Linolenic Soybeans Grown in Maryland. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 549-558.	0.8	6
202	Preparation of Novel Cross-Linked and Octylated Caseinates Using a Biphasic Enzymatic Procedure and Their Functional Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 8655-8662.	2.4	6
203	Synthesis of 2-Monochloropanol Fatty Acid Esters and Their Acute Oral Toxicities in Swiss Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 3789-3795.	2.4	6
204	Triacylglycerols composition analysis of olive oils by ultraâ€performance convergence chromatography combined with quadrupole timeâ€ofâ€flight mass spectrometry. International Journal of Food Science and Technology, 2019, 54, 871-879.	1.3	6
205	Detection of olive oil adulteration with vegetable oils by ultraâ€performance convergence chromatographyâ€quadrupole timeâ€ofâ€flight mass spectrometry (UPC 2 â€QTOF MS) coupled with multivariate data analysis based on the differences of triacylglycerol compositions. Food Science and Nutrition, 2020, 8, 3759-3767.	1.5	6
206	Triacylglycerol and Fatty Acid Compositions of Blackberry, Red Raspberry, Black Raspberry, Blueberry and Cranberry Seed Oils by Ultra-Performance Convergence Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Foods, 2021, 10, 2530.	1.9	6
207	Soluble Free, Soluble Conjugated, and Insoluble Bound Phenolics in Tomato Seeds and Their Radical Scavenging and Antiproliferative Activities. Journal of Agricultural and Food Chemistry, 2022, 70, 9039-9047.	2.4	6
208	Isoflavone Composition and Antioxidant Capacity of Modified-Lipoxygenase Soybeans Grown in Maryland. Journal of Agricultural and Food Chemistry, 2011, 59, 12902-12909.	2.4	5
209	Differentiation of <i>Aurantii fructus immaturus</i> and <i>Fructus poniciri trifoliatae immaturus</i> by Flow-Injection with Ultraviolet Spectroscopic Detection and Proton Nuclear Magnetic Resonance Using Partial Least-Squares Discriminant Analysis. Analytical Letters, 2016, 49, 711-722.	1.0	5
210	Analysis of phenolic compositions in cranberry dietary supplements using UHPLC-HRMS. Journal of Food Composition and Analysis, 2020, 86, 103362.	1.9	5
211	Potential Biomarkers for Early Detection of 3-MCPD Dipalmitate Exposure in Sprague–Dawley Rats. Journal of Agricultural and Food Chemistry, 2020, 68, 9594-9602.	2.4	5
212	Development and Validation of a High-Throughput Based on Liquid Chromatography with Ultraviolet Absorption and Mass Spectrometry Detection Method for Quantitation of Cichoric Acid in Echinacea purpurea Aerial-Based Dietary Supplements. Journal of AOAC INTERNATIONAL, 2006, 89, 612-618.	0.7	4
213	Comparison of Ion Mobility Fuzzy Chromatography Mass Spectrometric (imFCMS) Fingerprinting and FCMS Fingerprinting for Differentiation of American Cranberry Cultivars. Journal of Analysis and Testing, 2018, 2, 223-234.	2.5	4
214	Quantitative analysis of proanthocyanidins in cocoa using cysteamine-induced thiolysis and reversed-phase UPLC. Analytical and Bioanalytical Chemistry, 2020, 412, 4343-4352.	1.9	4
215	Proteomic Analyses of 3-Monochloropropanediol 1-Monooleate and 1-Monostearate Induced Testicular Toxicity in a 90 Day Sprague-Dawley Rats' Study. Journal of Agricultural and Food Chemistry, 2021, 69, 4542-4549.	2.4	4
216	Chromatographic fingerprint analysis of Pycnogenol dietary supplements. Journal of AOAC INTERNATIONAL, 2009, 92, 624-32.	0.7	4

#	Article	IF	CITATIONS
217	Structural Modification to Improve Psyllium Functionality. ACS Symposium Series, 2003, , 392-399.	0.5	3
218	Antioxidant Properties of Wheat Grain and its Fractions. , 0, , 7-23.		3
219	Antioxidant Properties of Wheat Phenolic Acids. , 0, , 54-72.		3
220	Grafting C8-C16 alkyl groups altered the self-assembly and curcumin –loading properties of sodium caseinate in water. Data in Brief, 2018, 16, 276-285.	0.5	3
221	Dietary Indole-3-Carbinol Alleviated Spleen Enlargement, Enhanced IgG Response in C3H/HeN Mice Infected with Citrobacter rodentium. Nutrients, 2020, 12, 3148.	1.7	3
222	Effects of Boiling and Steaming on the Carbohydrates of Sweet Corn. ACS Food Science & Technology, 0, , .	1.3	3
223	Phytochemical Compositions and Free Radical Scavenging Capacities of Selected Cold-Pressed Edible Seed Oils. ACS Symposium Series, 2007, , 255-267.	0.5	2
224	Carotenoid, Tocopherol, Lignan, Flavonoid, and Phytosterol Compositions of Wheat Grain and Its Fractions. , 0, , 42-53.		2
225	Wheat Lignans: Promising Cancer Preventive Agents. , 0, , 264-272.		2
226	Effects of Genotype, Environment and Genotype× Environment Interaction on the Antioxidant Properties of Wheat. , 0, , 24-41.		2
227	All Natural Whole-Wheat Functional Foods for Health Promotion and Disease Prevention. ACS Symposium Series, 2008, , 125-142.	0.5	2
228	Nutraceutical and Health Properties of Psyllium. , 2012, , 149-163.		2
229	Exploratory Chemometric Analysis on Source of Origin and Cultivar of Chinese Wolfberries Using Liquid Chromatographâ dass Spectrometric and Flow Injection Mass Spectrometric (FIMS) Fingerprints. ACS Symposium Series, 2015, , 279-292.	0.5	2
230	Study on Human Urinary Metabolic Profiles after Consumption of Kale and Daikon Radish using a High-resolution Mass Spectrometry-Based Non-targeted and Targeted Metabolomic Approach. Journal of Agricultural and Food Chemistry, 2020, 68, 14307-14318.	2.4	2
231	Development of a Metabolite Ratio Rule-Based Method for Automated Metabolite Profiling and Species Differentiation of Four Major Cinnamon Species. Journal of Agricultural and Food Chemistry, 2022, 70, 5450-5457.	2.4	2
232	Contrast Study on Secondary Metabolite Profile between Pastas Made from Three Single Varietal Common Bean (<i>Phaseolus vulgaris</i> L.) and Durum Wheat (<i>Triticum durum</i>) . ACS Food Science & Technology, 2022, 2, 895-904.	1.3	2
233	Value-Added Utilization of Fruit Seed Oils for Improving Human Health: A Progress Review. ACS Food Science & Technology, 2023, 3, 528-538.	1.3	2
234	Radical Scavenging Properties of Cold-Pressed Edible Seed Oils. ACS Symposium Series, 2005, , 107-117.	0.5	1

#	Article	IF	CITATIONS
235	Analysis of Tocopherols and Carotenoids in Wheat Materials Using Liquid Chromatography–Mass Spectrometry Technology. , 0, , 190-207.		1
236	Quantification of Phenolic Acids in Wheat and Wheat-Based Products. , 0, , 208-218.		1
237	HPLC/MS Fingerprinting Techniques for Quality Control of <i>Gynostemma pentaphyllum</i> (Thunb.) Makino Samples. ACS Symposium Series, 2013, , 31-47.	0.5	1
238	Selected lipid-based transfection reagents activate NF-κB and MAP kinases signaling pathways, induced cytokines mRNA expression in human THP-1 macrophage. Analytical Biochemistry, 2019, 573, 73-76.	1.1	1
239	Expression of the xenobiotic metabolizing enzyme cytochrome P450 1B1 alters antiâ€inflammatory activity of quercetin, kaempferol and taxifolin in macrophage and monocyte (830.25). FASEB Journal, 2014, 28, 830.25.	0.2	1
240	Molecular Analysis of Cholestyramine Treatment in Hamster Model Identified CYP51 as Cholestyramineâ€Responsive Gene. FASEB Journal, 2015, 29, 607.13.	0.2	1
241	Development and validation of a high-throughput based on liquid chromatography with ultraviolet absorption and mass spectrometry detection method for quantitation of cichoric acid in Echinacea purpurea aerial-based dietary supplements. Journal of AOAC INTERNATIONAL, 2006, 89, 612-8.	0.7	1
242	Phenolic Acid Composition of Wheat Bran. ACS Symposium Series, 2005, , 10-18.	0.5	0
243	Effects of Extraction Method and Conditions on Wheat Antioxidant Activity Estimation. , 0, , 100-117.		0
244	Application of ESR in Wheat Antioxidant Determination. , 0, , 173-189.		0
245	Wheat Antioxidants and Cholesterol Metabolism. , 0, , 236-243.		0
246	Effects of Wheat on Normal Intestine. , 0, , 219-235.		0
247	Effects of Postharvest Treatments, Food Formulation, and Processing Conditions on Wheat Antioxidant Properties. , 0, , 73-87.		0
248	Antioxidant Properties of Wheat-Based Breakfast Foods. , 0, , 88-99.		0
249	Wheat Antioxidant Bioavailability. , 0, , 244-263.		0
250	Overview and Prospective. , 0, , 1-6.		0
251	Application of Analytical Chemistry to Botanicals and Dietary Supplements. Journal of AOAC INTERNATIONAL, 2009, 92, 622-623.	0.7	0
252	Assignment of ¹ H and ¹³ C NMR data for iridoid glycoside derivatives. Magnetic Resonance in Chemistry, 2019, 57, S117-S122.	1.1	0

#	Article	IF	CITATIONS
253	Transcriptomic Analysis of LNCaP Tumor Xenograft to Elucidate the Components and Mechanisms Contributed by Tumor Environment as Targets for Dietary Prostate Cancer Prevention Studies. Nutrients, 2021, 13, 1000.	1.7	0
254	The polycyclic flavonoid, trifolirhizin, inhibits proliferation in LNCaP and PCâ€3 human prostate cancer cells by arresting cell cycle progression at G1/S and G2/M, respectively. FASEB Journal, 2008, 22, 1110.3.	0.2	0
255	Broccoliâ€derived compounds modulate androgen upâ€regulation of C chemokine ligand 2 and enhancement of monocyte attraction to prostate cancer cells. FASEB Journal, 2012, 26, 822.10.	0.2	0
256	Resveratrol enhances the effect of lipopolysacchride on human monocytes THPâ€1 proâ€inflammatory cytokine expression. FASEB Journal, 2012, 26, 243.4.	0.2	0
257	Cholesterol lowering activity of soyâ€derived glyceollins in golden hamster model. FASEB Journal, 2012, 26, 821.14.	0.2	0
258	Differential regulation of chemokine (Câ€Xâ€C Motif) ligand 12 by lipopolysacchrides in differentiated and unâ€differentiated human THPâ€1 cells (835.4). FASEB Journal, 2014, 28, 835.4.	0.2	0
259	Profiling cocoaâ€derived flavanols and their metabolites in serum, urine, liver, and intestinal contents of pigs fed flavanolâ€enriched cocoa powder (LB420). FASEB Journal, 2014, 28, .	0.2	0
260	Androgen Regulation of CXCR4/CXCR7 Chemokine Receptors: Disconnect between Transcription and Translation in Androgenâ€responsive Prostate Cancer LNCaP Cells. FASEB Journal, 2015, 29, 629.9.	0.2	0
261	Changes in the Intestinal Microbiota and Host Inflammatory Gene Expression in Pigs Fed a Flavanolâ€Enriched Cocoa Powder. FASEB Journal, 2015, 29, 914.4.	0.2	0
262	Changing the Landscape: An Introduction to the Agricultural and Food Chemistry Technical Program at the 258th American Chemical Society National Meeting in San Diego. Journal of Agricultural and Food Chemistry, 2020, 68, 12769-12772.	2.4	0
263	Moving Chemistry from Bench to Market: An Introduction to the Agricultural and Food Chemistry Technical Program at the 260th American Chemical Society Fall 2020 Virtual Meeting & Expo. Journal of Agricultural and Food Chemistry, 2021, 69, 13255-13259.	2.4	0
264	Application of analytical chemistry to botanicals and dietary supplements. Journal of AOAC INTERNATIONAL, 2009, 92, 622-3.	0.7	0
265	Macromolecular Chemistry: The Second Century. An Introduction to the Agricultural and Food Chemistry Technical Program at the 261st American Chemical Society Spring Virtual Meeting & Expo. ACS Food Science & Technology, 2022, 2, 378-381.	1.3	0