
David J Pintel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7161662/publications.pdf Version: 2024-02-01

ΠΛΛΙΟ Ι ΡΙΝΤΕΙ

#	Article	IF	CITATIONS
1	The adeno-associated virus 2 genome and Rep 68/78 proteins interact with cellular sites of DNA damage. Human Molecular Genetics, 2022, 31, 985-998.	2.9	8
2	Rational engineering of a functional CpG-free ITR for AAV gene therapy. Gene Therapy, 2022, 29, 333-345.	4.5	23
3	Mutation of a single amino acid of pregnane X receptor switches an antagonist to agonist by altering AF-2 helix positioning. Cellular and Molecular Life Sciences, 2021, 78, 317-335.	5.4	21
4	The NS1 protein of the parvovirus MVM Aids in the localization of the viral genome to cellular sites of DNA damage. PLoS Pathogens, 2020, 16, e1009002.	4.7	23
5	Binding of CCCTC-Binding Factor (CTCF) to the Minute Virus of Mice Genome Is Important for Proper Processing of Viral P4-Generated Pre-mRNAs. Viruses, 2020, 12, 1368.	3.3	5
6	Viral Chromosome Conformation Capture (V3C) Assays for Identifying Trans-interaction Sites between Lytic Viruses and the Cellular Genome. Bio-protocol, 2019, 9, .	0.4	7
7	Minute Virus of Canines NP1 Protein Interacts with the Cellular Factor CPSF6 To Regulate Viral Alternative RNA Processing. Journal of Virology, 2019, 93, .	3.4	7
8	ICTV Virus Taxonomy Profile: Parvoviridae. Journal of General Virology, 2019, 100, 367-368.	2.9	312
9	The Human Bocavirus 1 NP1 Protein Is a Multifunctional Regulator of Viral RNA Processing. Journal of Virology, 2018, 92, .	3.4	6
10	Parvovirus minute virus of mice interacts with sites of cellular DNA damage to establish and amplify its lytic infection. ELife, 2018, 7, .	6.0	31
11	Minute Virus of Canines NP1 Protein Governs the Expression of a Subset of Essential Nonstructural Proteins via Its Role in RNA Processing. Journal of Virology, 2017, 91, .	3.4	11
12	Minute Virus of Mice Inhibits Transcription of the Cyclin B1 Gene during Infection. Journal of Virology, 2017, 91, .	3.4	9
13	Genetic engineering of CHO cells for viral resistance to minute virus of mice. Biotechnology and Bioengineering, 2017, 114, 576-588.	3.3	8
14	Protoparvovirus Interactions with the Cellular DNA Damage Response. Viruses, 2017, 9, 323.	3.3	19
15	NP1 Protein of the Bocaparvovirus Minute Virus of Canines Controls Access to the Viral Capsid Genes via Its Role in RNA Processing. Journal of Virology, 2016, 90, 1718-1728.	3.4	27
16	EXPRESSION OF VP2 PROTEIN OF RAT MINUTE VIRUS TYPE 1 (RMV-1) IN RECOMBINANT BACULOVIRUS AND ITS APPLICATION TO DIAGNOSIS OF RMV-1 INFECTION. TáiwÄn ShòuyÄ«xué Zázhì, 2014, 40, 21-27.	0.2	0
17	Efficient Parvovirus Replication Requires CRL4Cdt2-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA. PLoS Pathogens, 2014, 10, e1004055.	4.7	16
18	Parvovirus-Induced Depletion of Cyclin B1 Prevents Mitotic Entry of Infected Cells. PLoS Pathogens, 2014, 10, e1003891.	4.7	28

#	Article	IF	CITATIONS
19	The ATR Signaling Pathway Is Disabled during Infection with the Parvovirus Minute Virus of Mice. Journal of Virology, 2014, 88, 10189-10199.	3.4	13
20	The family Parvoviridae. Archives of Virology, 2014, 159, 1239-1247.	2.1	555
21	The Adeno-Associated Virus Type 5 Small Rep Proteins Expressed via Internal Translation Initiation Are Functional. Journal of Virology, 2013, 87, 296-303.	3.4	10
22	Characterization of the Nonstructural Proteins of the Bocavirus Minute Virus of Canines. Journal of Virology, 2013, 87, 1098-1104.	3.4	27
23	Replication of Minute Virus of Mice in Murine Cells Is Facilitated by Virally Induced Depletion of p21. Journal of Virology, 2012, 86, 8328-8332.	3.4	29
24	RNAse Mapping and Quantitation of RNA Isoforms. Methods in Molecular Biology, 2012, 883, 121-129.	0.9	8
25	Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA. Virology, 2012, 426, 60-65.	2.4	4
26	The large Rep protein of adeno-associated virus type 2 is polyubiquitinated. Journal of General Virology, 2011, 92, 2792-2796.	2.9	3
27	Characterization of the gene expression profile of human bocavirus. Virology, 2010, 403, 145-154.	2.4	111
28	Adeno-Associated Virus Type 5 Utilizes Alternative Translation Initiation To Encode a Small Rep40-Like Protein. Journal of Virology, 2010, 84, 1193-1197.	3.4	6
29	Adeno-Associated Virus Small Rep Proteins Are Modified with at Least Two Types of Polyubiquitination. Journal of Virology, 2010, 84, 1206-1211.	3.4	10
30	Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication. PLoS Pathogens, 2010, 6, e1001141.	4.7	90
31	The Capsid Proteins of Aleutian Mink Disease Virus Activate Caspases and Are Specifically Cleaved during Infection. Journal of Virology, 2010, 84, 2687-2696.	3.4	30
32	The Choice of Translation Initiation Site of the Rep Proteins from Goose Parvovirus P9-Generated mRNA Is Governed by Splicing and the Nature of the Excised Intron. Journal of Virology, 2009, 83, 10264-10268.	3.4	17
33	Deaminase-Independent Inhibition of Parvoviruses by the APOBEC3A Cytidine Deaminase. PLoS Pathogens, 2009, 5, e1000439.	4.7	120
34	Splicing of the Large Intron Present in the Nonstructural Gene of Minute Virus of Mice Is Governed by TIA-1/TIAR Binding Downstream of the Nonconsensus Donor. Journal of Virology, 2009, 83, 6306-6311.	3.4	7
35	ELISAs using human bocavirus VP2 virus-like particles for detection of antibodies against HBoV. Journal of Virological Methods, 2008, 149, 110-117.	2.1	54
36	E4Orf6-E1B-55k-Dependent Degradation of De Novo-Generated Adeno-Associated Virus Type 5 Rep52 and Capsid Proteins Employs a Cullin 5-Containing E3 Ligase Complex. Journal of Virology, 2008, 82, 3803-3808.	3.4	18

#	Article	IF	CITATIONS
37	Improved Splicing of Adeno-Associated Viral (AAV) Capsid Protein-Supplying Pre-mRNAs Leads to Increased Recombinant AAV Vector Production. Human Gene Therapy, 2008, 19, 1421-1427.	2.7	10
38	Block to the Production of Full-Length B19 Virus Transcripts by Internal Polyadenylation Is Overcome by Replication of the Viral Genome. Journal of Virology, 2008, 82, 9951-9963.	3.4	62
39	Processing of adeno-associated virus RNA. Frontiers in Bioscience - Landmark, 2008, 13, 3101.	3.0	27
40	Distance-Dependent Processing of Adeno-Associated Virus Type 5 RNA Is Controlled by 5′ Exon Definition. Journal of Virology, 2007, 81, 7974-7984.	3.4	14
41	Adeno-Associated Viruses Can Induce Phosphorylation of eIF2α via PKR Activation, Which Can Be Overcome by Helper Adenovirus Type 5 Virus-Associated RNA. Journal of Virology, 2007, 81, 11908-11916.	3.4	23
42	Upstream AP1- and CREB-Binding Sites Confer High Basal Activity on the Adeno-Associated Virus Type 5 Capsid Gene Promoter. Journal of Virology, 2007, 81, 2605-2613.	3.4	2
43	Positive and Negative Effects of Adenovirus Type 5 Helper Functions on Adeno-Associated Virus Type 5 (AAV5) Protein Accumulation Govern AAV5 Virus Production. Journal of Virology, 2007, 81, 2205-2212.	3.4	16
44	The Abundant R2 mRNA Generated by Aleutian Mink Disease Parvovirus Is Tricistronic, Encoding NS2, VP1, and VP2. Journal of Virology, 2007, 81, 6993-7000.	3.4	14
45	The Transcription Profile of the <i>Bocavirus</i> Bovine Parvovirus Is Unlike Those of Previously Characterized Parvoviruses. Journal of Virology, 2007, 81, 12080-12085.	3.4	49
46	Construction and biological activity of a fullâ€length molecular clone of human Torque teno virus (TTV) genotype 6. FEBS Journal, 2007, 274, 4719-4730.	4.7	25
47	Quantitation of encapsidated recombinant adeno-associated virus DNA in crude cell lysates and tissue culture medium by quantitative, real-time PCR. Journal of Virological Methods, 2006, 137, 193-204.	2.1	30
48	Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. Journal of Virological Methods, 2006, 138, 85-98.	2.1	230
49	Identification and Characterization of Two Internal Cleavage and Polyadenylation Sites of Parvovirus B19 RNA. Journal of Virology, 2006, 80, 1604-1609.	3.4	32
50	Expression Profiles of Bovine Adeno-Associated Virus and Avian Adeno-Associated Virus Display Significant Similarity to That of Adeno-Associated Virus Type 5. Journal of Virology, 2006, 80, 5482-5493.	3.4	12
51	The Transcription Profile of Aleutian Mink Disease Virus in CRFK Cells Is Generated by Alternative Processing of Pre-mRNAs Produced from a Single Promoter. Journal of Virology, 2006, 80, 654-662.	3.4	64
52	Efficient Expression of the Adeno-Associated Virus Type 5 P41 Capsid Gene Promoter in 293 Cells Does Not Require Rep. Journal of Virology, 2006, 80, 6559-6567.	3.4	10
53	Minute virus of mice small non-structural protein NS2 localizes within, but is not required for the formation of, Smn-associated autonomous parvovirus-associated replication bodies. Journal of General Virology, 2005, 86, 1009-1014.	2.9	11
54	Replication of Minute Virus of Mice DNA Is Critically Dependent on Accumulated Levels of NS2. Journal of Virology, 2005, 79, 12375-12381.	3.4	27

#	Article	IF	CITATIONS
55	The Expression Strategy of Goose Parvovirus Exhibits Features of both the Dependovirus and Parvovirus Genera. Journal of Virology, 2005, 79, 11035-11044.	3.4	40
56	Human Circovirus TT Virus Genotype 6 Expresses Six Proteins following Transfection of a Full-Length Clone. Journal of Virology, 2005, 79, 6505-6510.	3.4	58
57	Comparison of the Transcription Profile of Simian Parvovirus with That of the Human Erythrovirus B19 Reveals a Number of Unique Features. Journal of Virology, 2004, 78, 12929-12939.	3.4	31
58	Alternative Polyadenylation of Adeno-associated Virus Type 5 RNA within an Internal Intron Is Governed by the Distance between the Promoter and the Intron and Is Inhibited by U1 Small Nuclear RNP Binding to the Intervening Donor. Journal of Biological Chemistry, 2004, 279, 14889-14898.	3.4	25
59	Alternative Polyadenylation of Adeno-Associated Virus Type 5 RNA within an Internal Intron Is Governed by both a Downstream Element within the Intron 3â€2 Splice Acceptor and an Element Upstream of the P41 Initiation Site. Journal of Virology, 2004, 78, 83-93.	3.4	21
60	<i>Trans</i> -Splicing Adeno-Associated Viral Vector-Mediated Gene Therapy Is Limited by the Accumulation of Spliced mRNA but Not by Dual Vector Coinfection Efficiency. Human Gene Therapy, 2004, 15, 896-905.	2.7	2
61	Characterization of the Transcription Profile of Adeno-Associated Virus Type 5 Reveals a Number of Unique Features Compared to Previously Characterized Adeno-Associated Viruses. Journal of Virology, 2002, 76, 12435-12447.	3.4	64
62	Interaction between Parvovirus NS2 Protein and Nuclear Export Factor Crm1 Is Important for Viral Egress from the Nucleus of Murine Cells. Journal of Virology, 2002, 76, 3257-3266.	3.4	63
63	Minute Virus of Mice Small Nonstructural Protein NS2 Interacts and Colocalizes with the Smn Protein. Journal of Virology, 2002, 76, 6364-6369.	3.4	24
64	The Adeno-Associated Virus Type 2 Rep Protein Regulates RNA Processing via Interaction with the Transcription Template. Molecular and Cellular Biology, 2002, 22, 3639-3652.	2.3	58
65	Minute Virus of Mice NS1 Interacts with the SMN Protein, and They Colocalize in Novel Nuclear Bodies Induced by Parvovirus Infection. Journal of Virology, 2002, 76, 3892-3904.	3.4	55
66	Molecular characterization of three newly recognized rat parvoviruses. Journal of General Virology, 2002, 83, 2075-2083.	2.9	30
67	The NS2 Protein Generated by the Parvovirus Minute Virus of Mice Is Degraded by the Proteasome in a Manner Independent of Ubiquitin Chain Elongation or Activation. Virology, 2001, 285, 346-355.	2.4	24
68	Construction and initial characterization of an infectious plasmid clone of a newly identified hamster parvovirus. Journal of General Virology, 2001, 82, 919-927.	2.9	7
69	Adeno-Associated Virus RNAs Appear in a Temporal Order and Their Splicing Is Stimulated during Coinfection with Adenovirus. Journal of Virology, 2000, 74, 9878-9888.	3.4	37
70	A Premature Termination Codon in Either Exon of Minute Virus of Mice P4 Promoter-generated Pre-mRNA Can Inhibit Nuclear Splicing of the Intervening Intron in an Open Reading Frame-dependent Manner. Journal of Biological Chemistry, 1999, 274, 22452-22458.	3.4	32
71	A Premature Termination Codon Interferes with the Nuclear Function of an Exon Splicing Enhancer in an Open Reading Frame-Dependent Manner. Molecular and Cellular Biology, 1999, 19, 1640-1650.	2.3	32
72	CA- and Purine-Rich Elements Form a Novel Bipartite Exon Enhancer Which Governs Inclusion of the Minute Virus of Mice NS2-Specific Exon in Both Singly and Doubly Spliced mRNAs. Molecular and Cellular Biology, 1999, 19, 364-375.	2.3	26

#	Article	IF	CITATIONS
73	Amino Acids 16–275 of Minute Virus of Mice NS1 Include a Domain That Specifically Binds (ACCA)2–3-Containing DNA. Virology, 1998, 251, 123-131.	2.4	16
74	Determinants that govern alternative splicing of parvovirus pre-mRNAs. Seminars in Virology, 1995, 6, 283-290.	3.9	21
75	Accumulation of MVM gene products is differentially regulated by transcription initiation, RNA processing and protein stability. Virology, 1991, 181, 22-34.	2.4	107
76	The p39 promoter of minute virus of mice directs high levels of bovine growth hormone gene expression in the bovine papilloma virus shuttle vector. Gene, 1987, 56, 297-300.	2.2	5
77	The genome of minute virus of mice, an autonomous parvovirus, encodes two overlapping transcription units. Nucleic Acids Research, 1983, 11, 1019-1038.	14.5	197