Harald Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7161600/publications.pdf

Version: 2024-02-01

56 papers 5,049 citations

147801 31 h-index 56 g-index

95 all docs 95 docs citations

95 times ranked 4694 citing authors

#	Article	IF	CITATIONS
1	Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration Into Functionally Distinct Intracellular Scaffolds. Annual Review of Biochemistry, 2004, 73, 749-789.	11.1	617
2	Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology, 2007, 8, 562-573.	37.0	563
3	Structure and Assembly Properties of the Intermediate Filament Protein Vimentin: The Role of its Head, Rod and Tail Domains. Journal of Molecular Biology, 1996, 264, 933-953.	4.2	312
4	Nuclear Envelope Composition Determines the Ability of Neutrophil-type Cells to Passage through Micron-scale Constrictions. Journal of Biological Chemistry, 2013, 288, 8610-8618.	3.4	270
5	Intermediate filaments: primary determinants of cell architecture and plasticity. Journal of Clinical Investigation, 2009, 119, 1772-1783.	8.2	268
6	Intermediate Filaments: Structure and Assembly. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018242.	5 . 5	266
7	Disruption of Nuclear Lamin Organization Blocks the Elongation Phase of DNA Replication. Journal of Cell Biology, 2000, 149, 1179-1192.	5. 2	208
8	Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function. Journal of Biological Chemistry, 2015, 290, 17145-17153.	3.4	207
9	Vimentin on the move:Ânew developments in cell migration. F1000Research, 2018, 7, 1796.	1.6	192
10	Functional complexity of intermediate filament cytoskeletons: From structure to assembly to gene ablation. International Review of Cytology, 2002, 223, 83-175.	6.2	169
11	Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly. Journal of Molecular Biology, 1992, 223, 637-650.	4.2	159
12	Molecular and Biophysical Characterization of Assembly-Starter Units of Human Vimentin. Journal of Molecular Biology, 2004, 340, 97-114.	4.2	148
13	Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 2015, 32, 82-91.	5.4	134
14	Isolation, Characterization, and In Vitro Assembly of Intermediate Filaments. Methods in Cell Biology, 2004, 78, 3-24.	1.1	126
15	Characterization of Early Assembly Intermediates of Recombinant Human Keratins. Journal of Structural Biology, 2002, 137, 82-96.	2.8	104
16	Dominant cataract formation in association with a vimentin assembly disrupting mutation. Human Molecular Genetics, 2009, 18, 1052-1057.	2.9	88
17	A Quantitative Kinetic Model for the in Vitro Assembly of Intermediate Filaments from Tetrameric Vimentin. Journal of Biological Chemistry, 2007, 282, 18563-18572.	3.4	84
18	Temperature-sensitive Intermediate Filament Assembly. Journal of Molecular Biology, 1993, 234, 99-113.	4.2	59

#	Article	IF	Citations
19	Microtubuleâ€dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rhoâ€and p21â€activated kinases. FASEB Journal, 2014, 28, 2879-2890.	0.5	55
20	Vimentin Intermediate Filament Formation: In Vitro Measurement and Mathematical Modeling of the Filament Length Distribution during Assembly. Langmuir, 2009, 25, 8817-8823.	3.5	51
21	Attractive Interactions among Intermediate Filaments Determine Network Mechanics In Vitro. PLoS ONE, 2014, 9, e93194.	2.5	51
22	Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. European Journal of Cell Biology, 2006, 85, 1-10.	3.6	50
23	New roles for desmin in the maintenance of muscle homeostasis. FEBS Journal, 2022, 289, 2755-2770.	4.7	50
24	Complex formation and kinetics of filament assembly exhibited by the simple epithelial keratins K8 and K18. Journal of Structural Biology, 2012, 177, 54-62.	2.8	49
25	Direct Observation of Subunit Exchange along Mature Vimentin Intermediate Filaments. Biophysical Journal, 2014, 107, 2923-2931.	0.5	49
26	A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice. Journal of Cell Science, 2008, 121, 3737-3746.	2.0	48
27	Assembly kinetics determine the structure of keratin networks. Soft Matter, 2012, 8, 8873.	2.7	47
28	Altering lamina assembly identifies lamina-dependent and -independent functions for A-type lamins. Journal of Cell Science, 2015, 128, 3607-20.	2.0	46
29	Association of Plectin with Z-Discs Is a Prerequisite for the Formation of the Intermyofibrillar Desmin Cytoskeleton. Laboratory Investigation, 2000, 80, 455-464.	3.7	42
30	Mutation of the nuclear lamin gene <i>LMNB2</i> in progressive myoclonus epilepsy with early ataxia. Human Molecular Genetics, 2015, 24, 4483-4490.	2.9	41
31	Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange. Journal of Biological Chemistry, 2016, 291, 24931-24950.	3.4	40
32	An imageâ€based smallâ€molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. FASEB Journal, 2018, 32, 2841-2854.	0.5	37
33	Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophysical Journal, 2018, 114, 2408-2418.	0.5	29
34	Dual Functional States of R406W-Desmin Assembly Complexes Cause Cardiomyopathy With Severe Intercalated Disc Derangement in Humans and in Knock-In Mice. Circulation, 2020, 142, 2155-2171.	1.6	27
35	Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Molecular Biology of the Cell, 2016, 27, 3869-3882.	2.1	26
36	Deleterious assembly of mutant p.S143P lamin A/C causes ER stress in familial dilated cardiomyopathy. Journal of Cell Science, 2016, 129, 2732-43.	2.0	25

#	Article	IF	CITATIONS
37	Altered nuclear envelope structure and proteasome function of micronuclei. Experimental Cell Research, 2018, 371, 353-363.	2.6	25
38	Glassy dynamics in composite biopolymer networks. Soft Matter, 2018, 14, 7970-7978.	2.7	23
39	Near-UV Circular Dichroism Reveals Structural Transitions of Vimentin Subunits during Intermediate Filament Assembly. Journal of Molecular Biology, 2009, 386, 544-553.	4.2	22
40	Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects â^† F508CFTR Dysfunction: Impact in Cystic Fibrosis. Journal of Molecular Biology, 2016, 428, 2898-2915.	4.2	22
41	Molecular Interactions Driving Intermediate Filament Assembly. Cells, 2021, 10, 2457.	4.1	22
42	Assembly of Simple Epithelial Keratin Filaments: Deciphering the Ion Dependence in Filament Organization. Biomacromolecules, 2015, 16, 3313-3321.	5.4	20
43	$\hat{l}\pm B$ -crystallin is a sensor for assembly intermediates and for the subunit topology of desmin intermediate filaments. Cell Stress and Chaperones, 2017, 22, 613-626.	2.9	20
44	Oxygen and Conformation Dependent Protein Oxidation and Aggregation by Porphyrins in Hepatocytes and Light-Exposed Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 659-682.e1.	4.5	19
45	Effect of Divalent Cations on the Structure and Mechanics of Vimentin Intermediate Filaments. Biophysical Journal, 2020, 119, 55-64.	0.5	19
46	Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11359-11364.	7.1	17
47	Competitive Counterion Binding Regulates the Aggregation Onset of Vimentin Intermediate Filaments. Israel Journal of Chemistry, 2016, 56, 614-621.	2.3	17
48	Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of <i>InÂVitro</i> Multicomponent Interpenetrating Cytoskeletal Networks. Physical Review Letters, 2021, 127, 108101.	7.8	15
49	<i>LMNA</i> Mutation c.917T>G (p.L306R) Leads to Deleterious Hyper-Assembly of Lamin A/C and Associates with Severe Right Ventricular Cardiomyopathy and Premature Aging. Human Mutation, 2015, 36, 694-703.	2.5	14
50	In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study. PLoS ONE, 2016, 11, e0157451.	2.5	14
51	Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen–deuterium exchange. Journal of Structural Biology, 2015, 192, 426-440.	2.8	13
52	New ways to look at the interchromosomal-domain compartment. Protoplasma, 1999, 209, 157-165.	2.1	10
53	New insights into interactions between the nucleotideâ€binding domain of CFTR and keratin 8. Protein Science, 2017, 26, 343-354.	7.6	10
54	A general mathematical model for the inÂvitro assembly dynamics of intermediate filament proteins. Biophysical Journal, 2022, 121, 1094-1104.	0.5	5

#	Article	IF	CITATIONS
55	The danger of "multi-tasking". Nucleus, 2010, 1, 319-324.	2.2	3
56	Keratin gene mutations influence the keratinocyte response to DNA damage and cytokine induced apoptosis. Archives of Dermatological Research, 2017, 309, 587-593.	1.9	2