Pasi K. Korhonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7160790/publications.pdf

Version: 2024-02-01

77 papers

2,117 citations

279701 23 h-index 289141 40 g-index

77 all docs

77 docs citations

times ranked

77

2346 citing authors

#	Article	IF	CITATIONS
1	Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes – Biotechnological implications. Biotechnology Advances, 2022, 54, 107822.	6.0	9
2	An RNA Interference Tool to Silence Genes in Sarcoptes scabiei Eggs. International Journal of Molecular Sciences, 2022, 23, 873.	1.8	2
3	Nuclear genome of Bulinus truncatus, an intermediate host of the carcinogenic human blood fluke Schistosoma haematobium. Nature Communications, 2022, 13, 977.	5.8	14
4	Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation. PLoS Pathogens, 2022, 18, e1010288.	2.1	13
5	" <i>Escalibur</i> â€â€"A practical pipeline for the de novo analysis of nucleotide variation in nonmodel eukaryotes. Molecular Ecology Resources, 2022, , .	2.2	2
6	Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and conservation of the EG95-vaccine molecule. Communications Biology, 2022, 5, 199.	2.0	7
7	Bulinus truncatus transcriptome – a resource to enable molecular studies of snail and schistosome biology. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100015.	0.7	5
8	Nanopore Sequencing Resolves Elusive Long Tandem-Repeat Regions in Mitochondrial Genomes. International Journal of Molecular Sciences, 2021, 22, 1811.	1.8	18
9	Molecular diagnosis of scabies using a novel probe-based polymerase chain reaction assay targeting high-copy number repetitive sequences in the Sarcoptes scabiei genome. PLoS Neglected Tropical Diseases, 2021, 15, e0009149.	1.3	7
10	High-quality reference genome for Clonorchis sinensis. Genomics, 2021, 113, 1605-1615.	1.3	19
11	The mitogenome of <i>Halotydeus destructor</i> (Tucker) and its relationships with other trombidiform mites as inferred from nucleotide sequences and gene arrangements. Ecology and Evolution, 2021, 11, 14162-14174.	0.8	5
12	Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): Implications for snail systematics and schistosome epidemiology. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100017.	0.7	6
13	The developmental phosphoproteome of Haemonchus contortus. Journal of Proteomics, 2020, 213, 103615.	1.2	21
14	High-quality nuclear genome for Sarcoptes scabiei—A critical resource for a neglected parasite. PLoS Neglected Tropical Diseases, 2020, 14, e0008720.	1.3	25
15	Toward integrative †omics of the barber†s pole worm and related parasitic nematodes. Infection, Genetics and Evolution, 2020, 85, 104500.	1.0	11
16	First record of a tandem-repeat region within the mitochondrial genome of Clonorchis sinensis using a long-read sequencing approach. PLoS Neglected Tropical Diseases, 2020, 14, e0008552.	1.3	18
17	Marked mitochondrial genetic variation in individuals and populations of the carcinogenic liver fluke Clonorchis sinensis. PLoS Neglected Tropical Diseases, 2020, 14, e0008480.	1.3	6
18	Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. Advances in Parasitology, 2020, 108, 175-229.	1.4	17

#	Article	IF	CITATIONS
19	An Evaluation of Machine Learning Approaches for the Prediction of Essential Genes in Eukaryotes Using Protein Sequence-Derived Features. Computational and Structural Biotechnology Journal, 2019, 17, 785-796.	1.9	31
20	Dafachronic acid promotes larval development in Haemonchus contortus by modulating dauer signalling and lipid metabolism. PLoS Pathogens, 2019, 15, e1007960.	2.1	31
21	High-quality Schistosoma haematobium genome achieved by single-molecule and long-range sequencing. GigaScience, 2019, 8, .	3.3	41
22	Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium. PLoS Pathogens, 2019, 15, e1007513.	2.1	49
23	Long-read sequencing reveals a 4.4Âkb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasites and Vectors, 2019, 12, 238.	1.0	31
24	Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. PLoS ONE, 2019, 14, e0212248.	1.1	19
25	High throughput LC-MS/MS-based proteomic analysis of excretory-secretory products from short-term in vitro culture of Haemonchus contortus. Journal of Proteomics, 2019, 204, 103375.	1.2	44
26	Dauer signalling pathway model for Haemonchus contortus. Parasites and Vectors, 2019, 12, 187.	1.0	25
27	Common workflow language (CWL)-based software pipeline forde novogenome assembly from longand short-read data. GigaScience, 2019, 8, .	3.3	17
28	Molecular evidence for distinct modes of nutrient acquisition between visceral and neurotropic schistosomes of birds. Scientific Reports, 2019, 9, 1347.	1.6	17
29	Somatic proteome of Haemonchus contortus. International Journal for Parasitology, 2019, 49, 311-320.	1.3	38
30	Comparative bioinformatic analysis suggests that specific dauer-like signalling pathway components regulate Toxocara canis development and migration in the mammalian host. Parasites and Vectors, 2019, 12, 32.	1.0	15
31	Improved genomic resources and new bioinformatic workflow for the carcinogenic parasite Clonorchis sinensis: Biotechnological implications. Biotechnology Advances, 2018, 36, 894-904.	6.0	20
32	A TGF-Î ² type I receptor-like molecule with a key functional role in Haemonchus contortus development. International Journal for Parasitology, 2018, 48, 1023-1033.	1.3	16
33	The developmental lipidome of Haemonchus contortus. International Journal for Parasitology, 2018, 48, 887-895.	1.3	30
34	Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. International Journal for Parasitology, 2018, 48, 763-772.	1.3	30
35	Trehalose 6â€phosphate phosphatases of <i>Pseudomonas aeruginosa</i> . FASEB Journal, 2018, 32, 5470-5482.	0.2	9
36	The small RNA complement of adult Schistosoma haematobium. PLoS Neglected Tropical Diseases, 2018, 12, e0006535.	1.3	17

3

#	Article	IF	CITATIONS
37	Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation. Advances in Parasitology, 2018, 100, 155-208.	1.4	18
38	Mitochondrial genomic comparison of Clonorchis sinensis from South Korea with other isolates of this species. Infection, Genetics and Evolution, 2017, 51, 160-166.	1.0	13
39	Mitochondrial genomes of two Babesia taxa from sheep in China as a foundation for population genetic and epidemiological investigations. Infection, Genetics and Evolution, 2017, 47, 51-55.	1.0	6
40	Whipworm kinomes reflect a unique biology and adaptation to the host animal. International Journal for Parasitology, 2017, 47, 857-866.	1.3	10
41	The apicoplast genomes of two taxonomic units of Babesia from sheep. Veterinary Parasitology, 2017, 233, 123-128.	0.7	10
42	Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain. FASEB Journal, 2017, 31, 4515-4532.	0.2	25
43	Comparative transcriptomic analyses of male and female adult Toxocara canis. Gene, 2017, 600, 85-89.	1.0	12
44	Use of a bioinformatic-assisted primer design strategy to establish a new nested PCR-based method for Cryptosporidium. Parasites and Vectors, 2017, 10, 509.	1.0	18
45	The Battle Against Flystrike – Past Research and New Prospects Through Genomics. Advances in Parasitology, 2017, 98, 227-281.	1.4	6
46	Best practice data life cycle approaches for the life sciences. F1000Research, 2017, 6, 1618.	0.8	23
47	Harnessing the Toxocara Genome to Underpin Toxocariasis Research and New Interventions. Advances in Parasitology, 2016, 91, 87-110.	1.4	23
48	Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain. G3: Genes, Genomes, Genetics, 2016, 6, 2847-2856.	0.8	6
49	CAP protein superfamily members in Toxocara canis. Parasites and Vectors, 2016, 9, 360.	1.0	6
50	A blow to the fly â€" Lucilia cuprina draft genome and transcriptome to support advances in biology and biotechnology. Biotechnology Advances, 2016, 34, 605-620.	6.0	23
51	Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6034-6045.	1.4	33
52	Genomic resources for a unique, low-virulence Babesia taxon from China. Parasites and Vectors, 2016, 9, 564.	1.0	17
53	MicroRNAs of Toxocara canis and their predicted functional roles. Parasites and Vectors, 2016, 9, 229.	1.0	37
54	Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasites and Vectors, 2016, 9, 65.	1.0	13

#	Article	IF	CITATIONS
55	Pipeline for the identification and classification of ion channels in parasitic flatworms. Parasites and Vectors, 2016, 9, 155.	1.0	4
56	Phylogenomic and biogeographic reconstruction of the Trichinella complex. Nature Communications, 2016, 7, 10513.	5.8	107
57	Making sense of genomes of parasitic worms: Tackling bioinformatic challenges. Biotechnology Advances, 2016, 34, 663-686.	6.0	30
58	The complement of family M1 aminopeptidases of Haemonchus contortus â€" Biotechnological implications. Biotechnology Advances, 2016, 34, 65-76.	6.0	8
59	Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host. PLoS Neglected Tropical Diseases, 2016, 10, e0004406.	1.3	25
60	Exploring molecular variation in Schistosoma japonicum in China. Scientific Reports, 2015, 5, 17345.	1.6	33
61	The Haemonchus contortus kinome - a resource for fundamental molecular investigations and drug discovery. Parasites and Vectors, 2015, 8, 623.	1.0	14
62	Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites. PLoS Neglected Tropical Diseases, 2015, 9, e0004261.	1.3	16
63	Genetic blueprint of the zoonotic pathogen Toxocara canis. Nature Communications, 2015, 6, 6145.	5.8	103
64	The barber's pole worm CAP protein superfamily $\hat{a}\in$ " A basis for fundamental discovery and biotechnology advances. Biotechnology Advances, 2015, 33, 1744-1754.	6.0	16
65	Low cost whole-organism screening of compounds for anthelmintic activity. International Journal for Parasitology, 2015, 45, 333-343.	1.3	106
66	Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions. Nature Communications, 2015, 6, 7344.	5.8	67
67	Exploring the role of two interacting phosphoinositide 3-kinases of Haemonchus contortus. Parasites and Vectors, 2014, 7, 498.	1.0	13
68	Bioinformatic exploration of RIO protein kinases of parasitic and free-living nematodes. International Journal for Parasitology, 2014, 44, 827-836.	1.3	13
69	The Opisthorchis viverrini genome provides insights into life in the bile duct. Nature Communications, 2014, 5, 4378.	5.8	144
70	Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host–parasite interactions. International Journal for Parasitology, 2014, 44, 251-261.	1.3	6
71	Genome and transcriptome of the porcine whipworm Trichuris suis. Nature Genetics, 2014, 46, 701-706.	9.4	93
72	Mitochondrial genomes of Trichinella species and genotypes – a basis for diagnosis, and systematic and epidemiological explorations. International Journal for Parasitology, 2014, 44, 1073-1080.	1.3	40

#	Article	IF	CITATIONS
73	Identification of G protein-coupled receptors in Schistosoma haematobium and S. mansoni by comparative genomics. Parasites and Vectors, 2014, 7, 242.	1.0	37
74	Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. International Journal for Parasitology, 2014, 44, 485-496.	1.3	25
75	Getting the most out of parasitic helminth transcriptomes using HelmDB: Implications for biology and biotechnology. Biotechnology Advances, 2013, 31, 1109-1119.	6.0	23
76	Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomicsâ€"Prospects for new interventions. Biotechnology Advances, 2013, 31, 1486-1500.	6.0	18
77	The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biology, 2013, 14, R89.	13.9	192