Lesley Joy Rogers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7160189/publications.pdf

Version: 2024-02-01

165 papers 11,136 citations

53 h-index 99 g-index

174 all docs

174 docs citations

times ranked

174

3641 citing authors

#	Article	IF	CITATIONS
1	survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behavioral and Brain Sciences, 2005, 28, 575-589.	0.7	965
2	The Origins of Cerebral Asymmetry: A Review of Evidence of Behavioural and Brain Lateralization in Fishes, Reptiles and Amphibians. Neuroscience and Biobehavioral Reviews, 1998, 22, 411-426.	6.1	447
3	Advantages of having a lateralized brain. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S420-2.	2.6	423
4	Possible evolutionary origins of cognitive brain lateralization. Brain Research Reviews, 1999, 30, 164-175.	9.0	405
5	Origins of the Left & Drain. Scientific American, 2009, 301, 60-67.	1.0	365
6	Evolution of Hemispheric Specialization: Advantages and Disadvantages. Brain and Language, 2000, 73, 236-253.	1.6	306
7	Left–right asymmetries of behaviour and nervous system in invertebrates. Neuroscience and Biobehavioral Reviews, 2012, 36, 1273-1291.	6.1	273
8	Light experience and asymmetry of brain function in chickens. Nature, 1982, 297, 223-225.	27.8	243
9	Lateralisation of function in the chicken fore-brain. Pharmacology Biochemistry and Behavior, 1979, 10, 679-686.	2.9	220
10	Lateralisation of predator avoidance responses in three species of toads. Laterality, 2002, 7, 163-183.	1.0	204
11	Light input and the reversal of functional lateralization in the chicken brain. Behavioural Brain Research, 1990, 38, 211-221.	2.2	195
12	Relevance of brain and behavioural lateralization to animal welfare. Applied Animal Behaviour Science, 2010, 127, 1-11.	1.9	190
13	Hand and paw preferences in relation to the lateralized brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 943-954.	4.0	179
14	Lateralized agonistic responses and hindlimb use in toads. Animal Behaviour, 1998, 56, 875-881.	1.9	173
15	Lateralized use of the mouth in production of vocalizations by marmosets. Neuropsychologia, 1998, 36, 1265-1273.	1.6	173
16	Lateralization in vertebrates: Its early evolution, general pattern, and development. Advances in the Study of Behavior, 2002, 31, 107-161.	1.6	162
17	How birds use their eyes. Current Biology, 2001, 11, 29-33.	3.9	159
18	Behavioral, Structural and Neurochemical Asymmetries in the Avian Brain: A Model System for Studying Visual Development and Processing. Neuroscience and Biobehavioral Reviews, 1996, 20, 487-503.	6.1	153

#	Article	lF	CITATIONS
19	Right-pawedness in toads. Nature, 1996, 379, 408-408.	27.8	148
20	Development and function of lateralization in the avian brain. Brain Research Bulletin, 2008, 76, 235-244.	3.0	145
21	Lateralisation in the Avian Brain. Bird Behavior, 1980, 2, 1-12.	0.2	141
22	Lateralization of the Vertebrate Brain: Taking the Side of Model Systems. Journal of Neuroscience, 2005, 25, 10351-10357.	3.6	132
23	Hemispheric Specialization in Dogs for Processing Different Acoustic Stimuli. PLoS ONE, 2008, 3, e3349.	2.5	132
24	From Antenna to Antenna: Lateral Shift of Olfactory Memory Recall by Honeybees. PLoS ONE, 2008, 3, e2340.	2.5	131
25	Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behavioural Brain Research, 2005, 162, 62-70.	2.2	126
26	Lateralisation of escape responses in the stripe-faced dunnart, Sminthopsis macroura (Dasyuridae:) Tj ETQq0 0 0) rgBT/Ov	erlock 10 Tf 5
27	Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses, Equus caballus. Animal Behaviour, 2012, 83, 239-247.	1.9	113
28	Asymmetry of brain and behavior in animals: Its development, function, and human relevance. Genesis, 2014, 52, 555-571.	1.6	112
29	Asymmetry of flight and escape turning responses in horses. Laterality, 2007, 12, 464-474.	1.0	111
30	Early Experiential Effects on Laterality: Research on Chicks has Relevance to Other Species. Laterality, 1997, 2, 199-219.	1.0	108
31	Laterality of horses associated with emotionality in novel situations. Laterality, 2006, 11, 355-367.	1.0	106
32	Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behavioural Brain Research, 2010, 206, 236-239.	2.2	99
33	Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator. Brain Research Bulletin, 2008, 76, 304-306.	3.0	96
34	A right antenna for social behaviour in honeybees. Scientific Reports, 2013, 3, 2045.	3.3	95
35	The magnetic compass of domestic chickens, Gallus gallus. Journal of Experimental Biology, 2007, 210, 2300-2310.	1.7	94
36	Light experience and the development of behavioural lateralisation in chicks. Behavioural Brain Research, 2004, 155, 67-76.	2.2	90

#	Article	IF	Citations
37	Social recognition and approach in the chick: lateralization and effect of visual experience. Animal Behaviour, 2002, 63, 697-706.	1.9	88
38	Perception of biological motion in common marmosets (Callithrix jacchus): by females only. Animal Cognition, 2010, 13, 555-564.	1.8	83
39	When and Why Did Brains Break Symmetry?. Symmetry, 2015, 7, 2181-2194.	2.2	82
40	How ancient is brain lateralization?., 2002,, 9-69.		81
41	A function for the bicameral mind. Cortex, 2020, 124, 274-285.	2.4	81
42	Organisation of the tectorotundal and SP/IPS-rotundal projections in the chick. Journal of Comparative Neurology, 1998, 394, 171-185.	1.6	79
43	Asymmetry in the chicken forebrain during development and a possible involvement of the supraoptic decussation. Neuroscience Letters, 1983, 37, 123-127.	2.1	74
44	Light-dependent development of asymmetry in the ipsilateral and contralateral thalamofugal visual projections of the chick. Neuroscience Letters, 2003, 336, 81-84.	2.1	74
45	Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii). Applied Animal Behaviour Science, 2014, 151, 43-50.	1.9	72
46	Eye Preferences in Common Marmosets (Callithrix jacchus): Influence of Age, Stimulus, and Hand Preference. Laterality, 1998, 3, 109-130.	1.0	69
47	Bilaterally projecting neurons in the two visual pathways of chicks. Brain Research, 1998, 794, 281-290.	2.2	68
48	Chickens orient using a magnetic compass. Current Biology, 2005, 15, R620-R621.	3.9	67
49	Social mobbing calls in common marmosets (Callithrix jacchus): effects of experience and associated cortisol levels. Animal Cognition, 2008, 11, 349-358.	1.8	65
50	Patterns of Gazing in Orangutans (Pongo pygmaeus). International Journal of Primatology, 2002, 23, 501-526.	1.9	64
51	Lateralized prey-catching responses in the cane toad, Bufo marinus: analysis of complex visual stimuli. Animal Behaviour, 2004, 68, 767-775.	1.9	63
52	Persistence and search influenced by natural levels of androgens in young and adult chickens. Physiology and Behavior, 1974, 12, 197-204.	2.1	61
53	Cognitive bias, hand preference and welfare of common marmosets. Behavioural Brain Research, 2015, 287, 100-108.	2.2	60
54	The nature of lateralization in tetrapods. , 2002, , 94-125.		59

#	Article	lF	Citations
55	Lateralised brain function in anurans: Comparison to lateralisation in other vertebrates. Laterality, 2002, 7, 219-239.	1.0	57
56	Visuospatial reaching preferences of common marmosets (Callithrix jacchus): An assessment of individual biases across a variety of tasks Journal of Comparative Psychology (Washington, D C:) Tj ETQq0 0 0	rgB ō.∣s Ove	rloc k 610 Tf 50
57	A Matter of Degree: Strength of Brain Asymmetry and Behaviour. Symmetry, 2017, 9, 57.	2.2	55
58	Cortisol levels in hair reflect behavioural reactivity of dogs to acoustic stimuli. Research in Veterinary Science, 2013, 94, 49-54.	1.9	52
59	Australian Lungfish <i>(Neoceratodus forsteri)</i> : A Missing Link in the Evolution of Complementary Side Biases for Predator Avoidance and Prey Capture. Brain, Behavior and Evolution, 2009, 73, 295-303.	1.7	50
60	Same-sex sexual behavior in birds: expression is related to social mating system and state of development at hatching. Behavioral Ecology, 2007, 18, 21-33.	2.2	49
61	Response competition associated with right–left antennal asymmetries of new and old olfactory memory traces in honeybees. Behavioural Brain Research, 2010, 209, 36-41.	2.2	49
62	Advantages and disadvantages of lateralization. , 2002, , 126-154.		48
63	The two hemispheres of the avian brain: their differing roles in perceptual processing and the expression of behavior. Journal of Ornithology, 2012, 153, 61-74.	1.1	47
64	Brain Lateralization and Cognitive Capacity. Animals, 2021, 11, 1996.	2.3	47
65	Diurnal cycle in salivary cortisol levels in common marmosets. Developmental Psychobiology, 2004, 45, 134-139.	1.6	45
66	Effects of light stimulation of embryos on the use of position-specific and object-specific cues in binocular and monocular domestic chicks (Gallus gallus). Behavioural Brain Research, 2005, 163, 10-17.	2.2	45
67	Prehatching visual experience and lateralization in the visual Wulst of the chick. Behavioural Brain Research, 2002, 134, 375-385.	2,2	44
68	Contact calls of common marmosets (<i>Callithrix jacchus</i>): influence of age of caller on antiphonal calling and other vocal responses. American Journal of Primatology, 2009, 71, 165-170.	1.7	44
69	The Bee as a Model to Investigate Brain and Behavioural Asymmetries. Insects, 2014, 5, 120-138.	2.2	44
70	Differences in social and vocal behavior between left- and right-handed common marmosets (Callithrix jacchus) Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 402-411.	0.5	43
71	Complementary Specializations of the Left and Right Sides of the Honeybee Brain. Frontiers in Psychology, 2019, 10, 280.	2.1	42
72	Modulation of the development of light-initiated asymmetry in chick thalamofugal visual projections by oestradiol. Experimental Brain Research, 1993, 93, 89-94.	1.5	41

#	Article	IF	Citations
73	Lateralized antennal control of aggression and sex differences in red mason bees, Osmia bicornis. Scientific Reports, 2016, 6, 29411.	3.3	41
74	The molecular neurobiology of early learning, development, and sensitive periods, with emphasis on the avian brain. Molecular Neurobiology, 1993, 7, 161-187.	4.0	40
75	Light experience and the development of behavioural lateralization in chicks. Behavioural Brain Research, 2007, 177, 61-69.	2.2	40
76	Corticosterone treatment of the chick embryo affects light-stimulated development of the thalamofugal visual pathway. Behavioural Brain Research, 2005, 159, 63-71.	2.2	39
77	Complementary and lateralized forms of processing in Bufo marinus for novel and familiar prey. Neurobiology of Learning and Memory, 2006, 86, 214-227.	1.9	37
78	Lateralized response of chicks to magnetic cues. Behavioural Brain Research, 2008, 186, 66-71.	2.2	36
79	Lateralized visual and motor responses in the green tree frog, Litoria caerulea. Animal Behaviour, 2006, 72, 843-852.	1.9	35
80	Head-cocking as a form of exploration in the common marmoset and its development. Developmental Psychobiology, 2006, 48, 551-560.	1.6	33
81	Asymmetry is present in the thalamofugal visual projections of female chicks. Experimental Brain Research, 1993, 92, 542-4.	1.5	32
82	Early Experiential Effects on Laterality: Research on Chicks has Relevance to Other Species. Laterality, 1997, 2, 199-219.	1.0	31
83	Responses to Odorants by the Domestic Chick. Physiology and Behavior, 1996, 60, 1441-1447.	2.1	30
84	The earliest origins and subsequent evolution of lateralization., 2002,, 70-93.		29
85	Origins of brain asymmetry: Lateralization of odour memory recall in primitive Australian stingless bees. Behavioural Brain Research, 2011, 224, 121-127.	2.2	29
86	Are Animals Autistic Savants. PLoS Biology, 2008, 6, e42.	5.6	28
87	Strength of hand preference and dual task performance by common marmosets. Animal Cognition, 2013, 16, 127-135.	1.8	28
88	Factors affecting the development of lateralization in chicks. , 2002, , 206-246.		26
89	Polypharmacy in an Australian teaching hospital: Preliminary analysis of prevalence, types of drugs and associations. Medical Journal of Australia, 1986, 145, 339-342.	1.7	25
90	A note on indoor and outdoor housing preferences of common marmosets (Callithrix jacchus). Applied Animal Behaviour Science, 2007, 108, 348-353.	1.9	25

#	Article	IF	Citations
91	The nitrogen excretion of Chelodina longicollis under conditions of hydration and dehydration. Comparative Biochemistry and Physiology, 1966, 18, 249-260.	1.1	24
92	Is painting by elephants in zoos as enriching as we are led to believe? PeerJ, 2014, 2, e471.	2.0	24
93	Chemosensory input and lateralization of brain function in the domestic chick. Behavioural Brain Research, 2002, 133, 293-300.	2.2	23
94	Relative Importance of Odour and Taste in the One-Trial Passive Avoidance Learning Bead Task. Physiology and Behavior, 1997, 62, 1299-1302.	2.1	22
95	Changes in olfactory responsiveness by the domestic chick after early exposure to odorants. Animal Behaviour, 1999, 58, 329-336.	1.9	22
96	Parental care in marmosets (Callithrix jacchus jacchus): Development and effect of anogenital licking on exploration Journal of Comparative Psychology (Washington, D C: 1983), 1999, 113, 269-276.	0.5	22
97	Factors Influencing Development of Lateralization. Cortex, 2006, 42, 107-109.	2.4	22
98	Limb preference and skeletal asymmetry in the cane toad, Bufo marinus (Anura: Bufonidae). Laterality, 2002, 7, 261-275.	1.0	21
99	Correlations between hand preference and cortical thickness in the secondary somatosensory (SII) cortex of the common marmoset, callithrix jacchus Behavioral Neuroscience, 2008, 122, 1343-1351.	1.2	21
100	Stability of referential signalling across time and locations: testing alarm calls of Australian magpies (<i>Gymnorhina tibicen</i>) in urban and rural Australia and in Fiji. PeerJ, 2013, 1, e112.	2.0	21
101	Organization of intratelencephalic projections to the visual Wulst of the chick. Brain Research, 2000, 856, 152-162.	2.2	20
102	Stress and stress reduction in common marmosets. Applied Animal Behaviour Science, 2012, 137, 175-182.	1.9	20
103	Alarm Calls of the Australian Magpie (Gymnorhina tibicen): Predators Elicit Complex Vocal Responses and Mobbing Behaviour. Open Ornithology Journal, 2009, 2, 7-16.	0.4	20
104	Facing an obstacle: Lateralization of object and spatial cognition. , 2002, , 383-444.		18
105	Does Functional Lateralization in Birds Have any Implications for Their Welfare?. Symmetry, 2019, 11, 1043.	2.2	18
106	Similarity of the song nuclei of male and female Australian magpies (Gymnorhina tibicen). Behavioural Brain Research, 2001, 123, 89-102.	2.2	17
107	Behavioural development and lateralization. , 2002, , 157-205.		17
108	Different responses in two strains of chickens (Gallus gallus) in a magnetic orientation test. Animal Cognition, 2008, 11, 547-552.	1.8	17

#	Article	IF	Citations
109	Light exposure during incubation and social and vigilance behaviour of domestic chicks. Laterality, 2009, 14, 381-394.	1.0	17
110	Clever strategists: Australian Magpies vary mobbing strategies, not intensity, relative to different species of predator. PeerJ, 2013, 1, e56.	2.0	17
111	Influence of exposure in ovo to different light wavelengths on the lateralization of social response in zebrafish larvae. Physiology and Behavior, 2016, 157, 258-264.	2.1	16
112	Manual bias, behavior, and cognition in common marmosets and other primates. Progress in Brain Research, 2018, 238, 91-113.	1.4	16
113	Differential sensitivities of the two visual pathways of the chick to labelling by fluorescent retrograde tracers. Journal of Neuroscience Methods, 1999, 89, 75-86.	2.5	15
114	Ontogeny of visual asymmetry in pigeons. , 2002, , 247-273.		15
115	Chicks prefer to peck at insect-like elongated stimuli moving in a direction orthogonal to their longer axis. Animal Cognition, 2009, 12, 755-765.	1.8	15
116	Development of laterality and the role of the corpus callosum in rodents and humans., 2002, , 274-305.		14
117	Experience-induced modulation of the use of spatial information in the domestic chick. Animal Behaviour, 2005, 69, 1093-1100.	1.9	14
118	Limb use and preferences in wild orangâ€utans during feeding and locomotor behavior. American Journal of Primatology, 2008, 70, 261-270.	1.7	14
119	Structural asymmetry in the thalamofugal visual projections in 2-day-old chick is correlated with a hemispheric difference in synaptic density in the hyperstriatum accessorium. Brain Research, 1992, 585, 381-385.	2.2	13
120	Ontogenetic development of magnetic compass orientation in domestic chickens (Gallus gallus). Journal of Experimental Biology, 2013, 216, 3143-7.	1.7	13
121	Brain Size Associated with Foot Preferences in Australian Parrots. Symmetry, 2021, 13, 867.	2.2	13
122	Stigma, Sex, and Society:. Journal of Homosexuality, 1978, 3, 315-330.	2.0	12
123	Shortcomings of the psychomedical research of John Money and co-workers into sex differences in behavior: Social and political implications. Sex Roles, 1982, 8, 269-281.	2.4	12
124	Eye and Ear Preferences. Neuromethods, 2017, , 79-102.	0.3	12
125	Lateral Asymmetry of Brain and Behaviour in the Zebra Finch, Taeniopygia guttata. Symmetry, 2018, 10, 679.	2.2	11
126	Visual dysfunction in the spontaneously hypertensive rat. Physiology and Behavior, 1993, 54, 903-907.	2.1	10

#	Article	IF	CITATIONS
127	Lateralization in its many Forms, and its Evolution and Development. Special Topics in Primatology, 2007, 5, 22-56.	0.3	10
128	forming an asymmetrical brain: genes, environment, and evolutionarily stable strategies. Behavioral and Brain Sciences, 2005, 28, 615-623.	0.7	9
129	Experience during a period of right hemispheric dominance alters attention to spatial information in the domestic chick. Animal Behaviour, 2007, 74, 413-418.	1.9	9
130	Visual lateralization and development of spatial and social spacing behaviour of chicks (Gallus gallus) Tj ETQq0 C	0 0 rgBT /C	verlock 10 Tf
131	Food Calls in Common Marmosets, Callithrix jacchus, and Evidence That One Is Functionally Referential. Animals, 2018, 8, 99.	2.3	9
132	Asymmetry of Motor Behavior and Sensory Perception: Which Comes First?. Symmetry, 2020, 12, 690.	2.2	9
133	Antennal Asymmetry in Social Behavior of the Australian Stingless Bee, Tetragonula carbonaria. Journal of Insect Behavior, 2016, 29, 491-499.	0.7	8
134	Brain and behavioural asymmetries in non-human species. Laterality, 2021, 26, v-vii.	1.0	8
135	Evolution of Side Biases: Motor versus Sensory Lateralization. , 2002, , 3-40.		8
136	Perception of the stereokinetic illusion by the common marmoset (Callithrix jacchus). Animal Cognition, 2007, 10, 135-140.	1.8	7
137	Oxalate nephropathy in a laboratory colony of common marmoset monkeys (<i>Callithrix jacchus</i>) following the ingestion of <i>Eucalyptus viminalis</i> . Veterinary Record, 2011, 169, 100-100.	0.3	7
138	Sexing the Brain: The Science and Pseudoscience of Sex Differences. Kaohsiung Journal of Medical Sciences, 2010, 26, S4-9.	1.9	6
139	Steroid hormones influence lightâ€dependent development of visual projections to the forebrain (Commentary on Letzner et al., 2020). European Journal of Neuroscience, 2020, 52, 3572-3574.	2.6	6
140	Increasing the Brain's Capacity: Neocortex, New Neurons, and Hemispheric Specialization. , 2004, , 289-323.		5
141	Hormonal theories for sex differences ? politics disguised as science: A reply to DeBold and Luria. Sex Roles, 1983, 9, 1109-1113.	2.4	4
142	Memory formation and brain lateralization. , 2002, , 582-633.		4
143	Brain mechanisms, cognition and behaviour in birds. Brain Research Bulletin, 2008, 76, 167-169.	3.0	4
144	Cognition and animal welfare. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 439-445.	2.8	4

#	Article	lF	Citations
145	Brain and Behavioral Lateralization in Animals. , 2015, , 799-805.		4
146	Differential Ageing of the Brain Hemispheres: Evidence from a Longitudinal Study of Hand Preferences in Common Marmosets. Symmetry, 2021, 13, 2349.	2.2	4
147	Breaking Out of the Dominant Paradigm:. Journal of Homosexuality, 1985, 10, 71-76.	2.0	3
148	Memory and lateralized recall. , 2002, , 533-581.		3
149	Indirect influences of gonadal hormones on sexual differentiation. Behavioral and Brain Sciences, 1998, 21, 337-338.	0.7	2
150	A new roadmap for <i>Laterality: Asymmetries of brain, behaviour, and cognition</i> . Laterality, 2020, 25, 1-4.	1.0	2
151	All Animals Are Not EqualThe Interface between Scientific Knowledge and Legislation for Animal Rights. , 2005, , 175-197.		2
152	From antenna to antenna: Lateral shift of olfactory memory in bees. Nature Precedings, 0, , .	0.1	1
153	The magnetic compass of domestic chickens. Communicative and Integrative Biology, 2013, 6, e27096.	1.4	1
154	Preface for the special issue on Lateralized Behaviour in Domesticated and Captive Animals. Applied Animal Behaviour Science, 2021, 241, 105277.	1.9	1
155	Lateralized motor behaviour in the righting responses of the cane toad (Rhinella marina). Laterality, 2021, , 1-43.	1.0	1
156	Scientific constructions, cultural productions: scientific narratives of sexual attraction., 2020 ,, $211-230$.		1
157	Laterality in Vertebrates and Invertebrates: Linked or Different?. , 2023, 1, 10-32.		1
158	Function., 0,, 35-61.		0
159	Applications and future directions. , 0, , 153-171.		0
160	Animal Rights in Research and Research Application. , 2015, , 703-707.		0
161	Brain Asymmetry of Structure and/or Function. Symmetry, 2019, 11, 214.	2.2	0
162	Obituary for Professor Richard J.ÂAndrew, 1932–2018. Laterality, 2020, 25, 393-404.	1.0	0

#	Article	IF	CITATIONS
163	Gisela Kaplan. , 2021, , 1-4.		O
164	<i>Laterality</i> entering the next decade – The 25th anniversary of a journal devoted to asymmetries of brain, behaviour and cognition. Laterality, 2021, 26, 261-264.	1.0	0
165	Gisela Kaplan. , 2022, , 2972-2975.		O