Valérie de Crécy-Lagard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7159802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chemical Biology, 2022, 17, 1638-1657.	1.6	9
2	Metabolite Damage and Damage Control in a Minimal Genome. MBio, 2022, 13, .	1.8	10
3	Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity. Trends in Microbiology, 2021, 29, 41-53.	3.5	67
4	A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME Journal, 2021, 15, 228-244.	4.4	91
5	Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes. RNA Biology, 2021, 18, 2278-2289.	1.5	7
6	Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nature Biotechnology, 2021, 39, 978-988.	9.4	43
7	Knowns and Unknowns of Vitamin B ₆ Metabolism in Escherichia coli. EcoSal Plus, 2021, 9,	2.1	19
8	Pantoea Bacteriophage vB_PagS_MED16—A Siphovirus Containing a 2′-Deoxy-7-amido-7-deazaguanosine-Modified DNA. International Journal of Molecular Sciences, 2021, 22, 7333.	1.8	2
9	Comparative Genomic Analysis of the DUF34 Protein Family Suggests Role as a Metal Ion Chaperone or Insertase. Biomolecules, 2021, 11, 1282.	1.8	5
10	Hypermodified DNA in Viruses of E.coli and Salmonella. EcoSal Plus, 2021, 9, eESP00282019.	2.1	24
11	Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to tRNA Queuosine Is a Unique Metalloenzyme. Biochemistry, 2021, 60, 3152-3161.	1.2	7
12	Bacterial RNA Degradosomes: Molecular Machines under Tight Control. Trends in Biochemical Sciences, 2020, 45, 42-57.	3.7	42
13	An Enzyme Containing the Conserved Domain of Unknown Function DUF62 Acts as a Stereoselective (<i>R_s,S_c</i>)â€ <i>S</i> â€Adenosylmethionine Hydrolase. ChemBioChem, 2020, 21, 3495-3499.	1.3	2
14	An Unusual Route for p -Aminobenzoate Biosynthesis in Chlamydia trachomatis Involves a Probable Self-Sacrificing Diiron Oxygenase. Journal of Bacteriology, 2020, 202, .	1.0	6
15	Detection of preQ0 deazaguanine modifications in bacteriophage CAjan DNA using Nanopore sequencing reveals same hypermodification at two distinct DNA motifs. Nucleic Acids Research, 2020, 48, 10383-10396.	6.5	22
16	The DUF328 family member YaaA is a DNA-binding protein with a novel fold. Journal of Biological Chemistry, 2020, 295, 14236-14247.	1.6	6
17	Whole-Genome Sequence of <i>Streptomyces kaniharaensis</i> Shomura and Niida SF-557. Microbiology Resource Announcements, 2020, 9, .	0.3	4
18	Specificity in the biosynthesis of the universal tRNA nucleoside <i>N</i> ⁶ -threonylcarbamoyl adenosine (t ⁶ A)—TsaD is the gatekeeper. Rna, 2020, 26, 1094-1103.	1.6	14

#	Article	IF	CITATIONS
19	Uncovering the chemistry of C–C bond formation in C-nucleoside biosynthesis: crystal structure of a C-glycoside synthase/PRPP complex. Chemical Communications, 2020, 56, 7617-7620.	2.2	15
20	Clostridioides difficile Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System. Cell Host and Microbe, 2020, 28, 411-421.e6.	5.1	36
21	Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168. Biomolecules, 2020, 10, 977.	1.8	21
22	Loss of Elongator- and KEOPS-Dependent tRNA Modifications Leads to Severe Growth Phenotypes and Protein Aggregation in Yeast. Biomolecules, 2020, 10, 322.	1.8	20
23	Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization. Journal of Bacteriology, 2020, 202, .	1.0	10
24	Reductive Evolution and Diversification of C5-Uracil Methylation in the Nucleic Acids of Mollicutes. Biomolecules, 2020, 10, 587.	1.8	8
25	Deoxyinosine and 7-Deaza-2-Deoxyguanosine as Carriers of Genetic Information in the DNA of <i>Campylobacter</i> Viruses. Journal of Virology, 2019, 93, .	1.5	25
26	Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19126-19135.	3.3	36
27	Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Research, 2019, 47, 2143-2159.	6.5	116
28	tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii. Journal of Bacteriology, 2019, 201, .	1.0	38
29	Identifying Pathogenic Islands through Genome Comparison. American Biology Teacher, 2019, 81, 577-581.	0.1	Ο
30	7-Deazaguanine modifications protect phage DNA from host restriction systems. Nature Communications, 2019, 10, 5442.	5.8	63
31	PMP–diketopiperazine adducts form at the active site of a PLP dependent enzyme involved in formycin biosynthesis. Chemical Communications, 2019, 55, 14502-14505.	2.2	7
32	Can Protein Expression Be Regulated by Modulation of tRNA Modification Profiles?. Biochemistry, 2019, 58, 355-362.	1.2	29
33	Essential metabolism for a minimal cell. ELife, 2019, 8, .	2.8	110
34	Evidence that the metabolite repair enzyme NAD(P)HX epimerase has a moonlighting function. Bioscience Reports, 2018, 38, .	1.1	20
35	A plastidial pantoate transporter with a potential role in pantothenate synthesis. Biochemical Journal, 2018, 475, 813-825.	1.7	13
36	Gene Graphics: a genomic neighborhood data visualization web application. Bioinformatics, 2018, 34, 1406-1408.	1.8	82

#	Article	IF	CITATIONS
37	MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Research, 2018, 46, D303-D307.	6.5	1,442
38	The t ⁶ A modification acts as a positive determinant for the anticodon nuclease PrrC, and is distinctively nonessential in <i>Streptococcus mutans</i> . RNA Biology, 2018, 15, 508-517.	1.5	11
39	Newly-discovered enzymes that function in metabolite damage-control. Current Opinion in Chemical Biology, 2018, 47, 101-108.	2.8	30
40	Identification of the minimal bacterial 2′â€deoxyâ€7â€amidoâ€7â€deazaguanine synthesis machinery. Molecu Microbiology, 2018, 110, 469-483.	lar 1.2	16
41	Evolutionary insights into Trm112-methyltransferase holoenzymes involved in translation between archaea and eukaryotes. Nucleic Acids Research, 2018, 46, 8483-8499.	6.5	37
42	S ‣uccinylcysteine Breakdown – How Bacillus subtilis Utilizes an Inevitable Product of Metabolite Damage. FASEB Journal, 2018, 32, 536.5.	0.2	0
43	Identification of a Novel Epoxyqueuosine Reductase Family by Comparative Genomics. ACS Chemical Biology, 2017, 12, 844-851.	1.6	40
44	tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy. European Journal of Human Genetics, 2017, 25, 545-551.	1.4	67
45	Deazaguanine derivatives, examples of crosstalk between RNA and DNA modification pathways. RNA Biology, 2017, 14, 1175-1184.	1.5	37
46	Discovery of a widespread prokaryotic 5-oxoprolinase that was hiding in plain sight. Journal of Biological Chemistry, 2017, 292, 16360-16367.	1.6	41
47	A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis. Biochemical Journal, 2017, 474, 2887-2895.	1.7	6
48	The Escherichia coli COG1738 Member YhhQ Is Involved in 7-Cyanodeazaguanine (preQ0) Transport. Biomolecules, 2017, 7, 12.	1.8	48
49	QueF-Like, a Non-Homologous Archaeosine Synthase from the Crenarchaeota. Biomolecules, 2017, 7, 36.	1.8	10
50	Global translational impacts of the loss of the tRNA modification t6A in yeast. Microbial Cell, 2016, 3, 29-45.	1.4	101
51	Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea. Archaea, 2016, 2016, 1-14.	2.3	24
52	Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB). Frontiers in Microbiology, 2016, 7, 431.	1.5	6
53	Functional Annotations of Paralogs: A Blessing and a Curse. Life, 2016, 6, 39.	1.1	45
54	Quality Annotations, a Key Frontier in the Microbial Sciences. Microbe Magazine, 2016, 11, 303-310.	0.4	3

#	Article	IF	CITATIONS
55	Mutations in PROSC Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin-B6-Dependent Epilepsy. American Journal of Human Genetics, 2016, 99, 1325-1337.	2.6	118
56	Arabidopsis <i>TH2</i> Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase. Plant Cell, 2016, 28, 2683-2696.	3.1	42
57	Systematic identification and analysis of frequent gene fusion events in metabolic pathways. BMC Genomics, 2016, 17, 473.	1.2	13
58	â€~Nothing of chemistry disappears in biology': the Top 30 damage-prone endogenous metabolites. Biochemical Society Transactions, 2016, 44, 961-971.	1.6	76
59	Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4161-9.	3.3	46
60	The Response of Acinetobacter baumannii to Zinc Starvation. Cell Host and Microbe, 2016, 19, 826-836.	5.1	108
61	A family of metal-dependent phosphatases implicated in metabolite damage-control. Nature Chemical Biology, 2016, 12, 621-627.	3.9	48
62	Members of a Novel Kinase Family (DUF1537) Can Recycle Toxic Intermediates into an Essential Metabolite. ACS Chemical Biology, 2016, 11, 2304-2311.	1.6	12
63	Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis. Biochemical Journal, 2016, 473, 157-166.	1.7	22
64	Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1452-9.	3.3	99
65	Metabolite Damage and Metabolite Damage Control in Plants. Annual Review of Plant Biology, 2016, 67, 131-152.	8.6	43
66	Evidence that COG0325 proteins are involved in PLP homeostasis. Microbiology (United Kingdom), 2016, 162, 694-706.	0.7	47
67	Essentiality of threonylcarbamoyladenosine (t ⁶ <scp>A</scp>), a universal t <scp>RNA</scp> modification, in bacteria. Molecular Microbiology, 2015, 98, 1199-1221.	1.2	72
68	Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in Genetics, 2015, 6, 148.	1.1	565
69	Proteins of unknown biochemical function - A persistent problem and a roadmap to help overcome it. Plant Physiology, 2015, 169, pp.00959.2015.	2.3	60
70	Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 18678-18698.	1.6	70
71	A directed-overflow and damage-control <i>N</i> -glycosidase in riboflavin biosynthesis. Biochemical Journal, 2015, 466, 137-145.	1.7	38
72	The Levels of a Universally Conserved tRNA Modification Regulate Cell Growth. Journal of Biological Chemistry, 2015, 290, 18699-18707.	1.6	38

#	Article	IF	CITATIONS
73	Mannitolâ€1â€phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress. Environmental Microbiology, 2015, 17, 711-719.	1.8	21
74	The emerging role of complex modifications of tRNALysUUU in signaling pathways. Microbial Cell, 2015, 2, 1-4.	1.4	20
75	Predicting the Minimal Translation Apparatus: Lessons from the Reductive Evolution of Mollicutes. PLoS Genetics, 2014, 10, e1004363.	1.5	127
76	Salvage of the thiamin pyrimidine moiety by plant TenA proteins lacking an active-site cysteine. Biochemical Journal, 2014, 463, 145-155.	1.7	22
77	Promiscuous and Adaptable Enzymes Fill "Holes―in the Tetrahydrofolate Pathway in <i>Chlamydia</i> Species. MBio, 2014, 5, e01378-14.	1.8	47
78	Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t ⁶ A), a universal modification of tRNA. RNA Biology, 2014, 11, 1529-1539.	1.5	79
79	Cross Kingdom Functional Conservation of the Core Universally Conserved Threonylcarbamoyladenosine tRNA Synthesis Enzymes. Eukaryotic Cell, 2014, 13, 1222-1231.	3.4	32
80	Genome Sequence of <i>Candidatus</i> Riesia pediculischaeffi, Endosymbiont of Chimpanzee Lice, and Genomic Comparison of Recently Acquired Endosymbionts from Human and Chimpanzee Lice. G3: Genes, Genomes, Genetics, 2014, 4, 2189-2195.	0.8	30
81	Discovery of the β-barrel–type RNA methyltransferase responsible for <i>N</i> ⁶ -methylation of <i>N</i> ⁶ -threonylcarbamoyladenosine in tRNAs. Nucleic Acids Research, 2014, 42, 9350-9365.	6.5	42
82	Plant, Animal, and Fungal Micronutrient Queuosine Is Salvaged by Members of the DUF2419 Protein Family. ACS Chemical Biology, 2014, 9, 1812-1825.	1.6	48
83	Variations in metabolic pathways create challenges for automated metabolic reconstructions: Examples from the tetrahydrofolate synthesis pathway. Computational and Structural Biotechnology Journal, 2014, 10, 41-50.	1.9	30
84	High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9645-9650.	3.3	69
85	Integrative Data-Mining Tools to Link Gene and Function. Methods in Molecular Biology, 2014, 1101, 43-66.	0.4	4
86	Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize. Phytochemistry, 2013, 94, 68-73.	1.4	24
87	The COMBREX Project: Design, Methodology, and Initial Results. PLoS Biology, 2013, 11, e1001638.	2.6	54
88	Quinolinate Salvage and Insights for Targeting NAD Biosynthesis in Group A Streptococci. Journal of Bacteriology, 2013, 195, 726-732.	1.0	50
89	Identification of Mitochondrial Coenzyme A Transporters from Maize and Arabidopsis Â. Plant Physiology, 2013, 162, 581-588.	2.3	31
90	The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA. Rna, 2012, 18, 421-433.	1.6	36

#	Article	IF	CITATIONS
91	Structural Basis of Biological Nitrile Reduction. Journal of Biological Chemistry, 2012, 287, 30560-30570.	1.6	27
92	Experimental Evolution of a Facultative Thermophile from a Mesophilic Ancestor. Applied and Environmental Microbiology, 2012, 78, 144-155.	1.4	65
93	Identification and Characterization of the Missing Pyrimidine Reductase in the Plant Riboflavin Biosynthesis Pathway Â. Plant Physiology, 2012, 161, 48-56.	2.3	20
94	Comparative Genomics Guided Discovery of Two Missing Archaeal Enzyme Families Involved in the Biosynthesis of the Pterin Moiety of Tetrahydromethanopterin and Tetrahydrofolate. ACS Chemical Biology, 2012, 7, 1807-1816.	1.6	20
95	Plant B Vitamin Pathways and their Compartmentation: a Guide for the Perplexed. Journal of Experimental Botany, 2012, 63, 5379-5395.	2.4	78
96	Functional Promiscuity of the COG0720 Family. ACS Chemical Biology, 2012, 7, 197-209.	1.6	29
97	Diversity of Archaeosine Synthesis in Crenarchaeota. ACS Chemical Biology, 2012, 7, 300-305.	1.6	41
98	Biosynthesis of Threonylcarbamoyl Adenosine (t6A), a Universal tRNA Nucleoside. Journal of Biological Chemistry, 2012, 287, 13666-13673.	1.6	109
99	Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs. Annual Review of Genetics, 2012, 46, 69-95.	3.2	448
100	Comparative genomic analysis of the DUF71/COG2102 family predicts roles in diphthamide biosynthesis and B12 salvage. Biology Direct, 2012, 7, 32.	1.9	19
101	YeiR: a metal-binding GTPase from Escherichia coli involved in metal homeostasis. Metallomics, 2012, 4, 488.	1.0	49
102	A Genetic Investigation of the KEOPS Complex in Halophilic Archaea. PLoS ONE, 2012, 7, e43013.	1.1	26
103	Decoding in Candidatus Riesia pediculicola, close to a minimal tRNA modification set?. Trends in Cell & Molecular Biology, 2012, 7, 11-34.	0.5	14
104	Synergistic use of plant-prokaryote comparative genomics for functional annotations. BMC Genomics, 2011, 12, S2.	1.2	43
105	Biosynthesis and function of tRNA modifications in Archaea. Current Opinion in Microbiology, 2011, 14, 335-341.	2.3	49
106	Erratum to "Towards a Systems Approach in the Genetic Analysis of Archaea: Accelerating Mutant Construction and Phenotypic Analysis in <i>Haloferax volcanii</i> ― Archaea, 2011, 2011, 1-1.	2.3	26
107	Role of a Zn-independent DksA in Zn homeostasis and stringent response. Molecular Microbiology, 2011, 79, 700-715.	1.2	68
108	A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO Journal, 2011, 30, 882-893.	3.5	132

Valérie de Crécy-Lagard

#	Article	IF	CITATIONS
109	Mining high-throughput experimental data to link gene and function. Trends in Biotechnology, 2011, 29, 174-182.	4.9	45
110	A 5-formyltetrahydrofolate cycloligase paralog from all domains of life: comparative genomic and experimental evidence for a cryptic role in thiamin metabolism. Functional and Integrative Genomics, 2011, 11, 467-478.	1.4	21
111	Pseudouridine formation in archaeal RNAs: The case of <i>Haloferax volcanii</i> . Rna, 2011, 17, 1367-1380.	1.6	40
112	Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs. Nucleic Acids Research, 2011, 39, 6148-6160.	6.5	79
113	Deciphering synonymous codons in the three domains of life: Coâ€evolution with specific tRNA modification enzymes. FEBS Letters, 2010, 584, 252-264.	1.3	272
114	Predicting the pathway involved in post-translational modification of Elongation factor P in a subset of bacterial species. Biology Direct, 2010, 5, 3.	1.9	64
115	Towards a Systems Approach in the Genetic Analysis of Archaea: Accelerating Mutant Construction and Phenotypic Analysis in <i>Haloferax volcanii</i> . Archaea, 2010, 2010, 1-11.	2.3	32
116	Moonlighting Glutamate Formiminotransferases Can Functionally Replace 5-Formyltetrahydrofolate Cycloligase*. Journal of Biological Chemistry, 2010, 285, 41557-41566.	1.6	25
117	Biosynthesis of Wyosine Derivatives in tRNA: An Ancient and Highly Diverse Pathway in Archaea. Molecular Biology and Evolution, 2010, 27, 2062-2077.	3.5	71
118	A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10412-10417.	3.3	81
119	FolX and FolM Are Essential for Tetrahydromonapterin Synthesis in Escherichia coli and Pseudomonas aeruginosa. Journal of Bacteriology, 2010, 192, 475-482.	1.0	46
120	Discovery and Characterization of an Amidinotransferase Involved in the Modification of Archaeal tRNA. Journal of Biological Chemistry, 2010, 285, 12706-12713.	1.6	35
121	â€`Unknown' proteins and â€`orphan' enzymes: the missing half of the engineering parts list – and hov find it. Biochemical Journal, 2010, 425, 1-11.	w to 1.7	183
122	A Gateway platform for functional genomics in <i>Haloferax volcanii</i> : deletion of three tRNA modification genes. Archaea, 2009, 2, 211-219.	2.3	20
123	A FAST AND ACCURATE ALGORITHM FOR COMPARATIVE ANALYSIS OF METABOLIC PATHWAYS. Journal of Bioinformatics and Computational Biology, 2009, 07, 389-428.	0.3	16
124	6-Pyruvoyltetrahydropterin Synthase Paralogs Replace the Folate Synthesis Enzyme Dihydroneopterin Aldolase in Diverse Bacteria. Journal of Bacteriology, 2009, 191, 4158-4165.	1.0	23
125	The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Research, 2009, 37, 2894-2909.	6.5	150
126	Zinc-Independent Folate Biosynthesis: Genetic, Biochemical, and Structural Investigations Reveal New Metal Dependence for GTP Cyclohydrolase IB. Journal of Bacteriology, 2009, 191, 6936-6949.	1.0	61

#	Article	IF	CITATIONS
127	A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics, 2009, 10, 470.	1.2	141
128	RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics, 2008, 9, 470.	1.2	66
129	Plasmodium falciparum: a paradigm for alternative folate biosynthesis in diverse microorganisms?. Trends in Parasitology, 2008, 24, 502-508.	1.5	21
130	Phylogenomic and Functional Analysis of Pterin-4a-Carbinolamine Dehydratase Family (COG2154) Proteins in Plants and Microorganisms Â. Plant Physiology, 2008, 146, 1515-1527.	2.3	33
131	Biosynthesis of 7-Deazaguanosine-Modified tRNA Nucleosides: a New Role for GTP Cyclohydrolase I. Journal of Bacteriology, 2008, 190, 7876-7884.	1.0	66
132	CONSISTENT ALIGNMENT OF METABOLIC PATHWAYS WITHOUT ABSTRACTION. , 2008, , .		10
133	Genetic Code Ambiguity Confers a Selective Advantage on <i>Acinetobacter baylyi</i> . Journal of Bacteriology, 2007, 189, 6494-6496.	1.0	36
134	Finding novel metabolic genes through plant-prokaryote phylogenomics. Trends in Microbiology, 2007, 15, 563-570.	3.5	22
135	Identification of Genes Encoding tRNA Modification Enzymes by Comparative Genomics. Methods in Enzymology, 2007, 425, 153-183.	0.4	22
136	Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics, 2007, 8, 245.	1.2	133
137	Comparative RNomics and Modomics in Mollicutes: Prediction of Gene Function and Evolutionary Implications. IUBMB Life, 2007, 59, 634-658.	1.5	76
138	Development of a novel continuous culture device for experimental evolution of bacterial populations. Applied Microbiology and Biotechnology, 2007, 77, 489-496.	1.7	38
139	Molecular determinants of dihydrouridine synthase activity. FEBS Letters, 2006, 580, 5198-5202.	1.3	19
140	Rapid Evolution of Diminished Transformability in Acinetobacter baylyi. Journal of Bacteriology, 2006, 188, 8534-8542.	1.0	37
141	Discovery of a New Prokaryotic Type I GTP Cyclohydrolase Family. Journal of Biological Chemistry, 2006, 281, 37586-37593.	1.6	56
142	Inhibited cell growth and protein functional changes from an editing-defective tRNA synthetase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1697-1701.	3.3	71
143	Inhibition of Mutation and Combating the Evolution of Antibiotic Resistance. PLoS Biology, 2005, 3, e176.	2.6	456
144	Discovery of a Gene Family Critical to Wyosine Base Formation in a Subset of Phenylalanine-specific Transfer RNAs. Journal of Biological Chemistry, 2005, 280, 37616-37622.	1.6	44

Valérie de Crécy-Lagard

#	Article	IF	CITATIONS
145	From cyclohydrolase to oxidoreductase: Discovery of nitrile reductase activity in a common fold. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4264-4269.	3.3	100
146	Major Biocontrol of Plant Tumors Targets tRNA Synthetase. Science, 2005, 309, 1533-1533.	6.0	86
147	The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes. Nucleic Acids Research, 2005, 33, 5691-5702.	6.5	1,806
148	Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Research, 2004, 32, 5780-5790.	6.5	159
149	Identification of Four Genes Necessary for Biosynthesis of the Modified Nucleoside Queuosine. Journal of Biological Chemistry, 2004, 279, 6280-6285.	1.6	129
150	Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code?. Trends in Biochemical Sciences, 2004, 29, 519-522.	3.7	22
151	Incorporation of Nonnatural Amino Acids Into Proteins. Annual Review of Biochemistry, 2004, 73, 147-176.	5.0	234
152	Identification of the tRNA-Dihydrouridine Synthase Family. Journal of Biological Chemistry, 2002, 277, 25090-25095.	1.6	92
153	Complete Reconstitution of the Human Coenzyme A Biosynthetic Pathway via Comparative Genomics. Journal of Biological Chemistry, 2002, 277, 21431-21439.	1.6	193
154	Mutational Separation of Two Pathways for Editing by a Class I tRNA Synthetase. Molecular Cell, 2002, 9, 353-362.	4.5	71
155	An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Nature, 2001, 411, 110-114.	13.7	46
156	The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Molecular Microbiology, 1999, 31, 521-532.	1.2	71
157	Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Molecular Microbiology, 1999, 32, 505-517.	1.2	80
158	Identification of two fructose transport and phosphorylation pathways in Xanthomonas campestris pv. campestris. Molecular Genetics and Genomics, 1991, 227, 465-472.	2.4	12