
## K Frank Austen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7159731/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lineage-specific regulation of inducible and constitutive mast cells in allergic airway inflammation.<br>Journal of Experimental Medicine, 2021, 218, .                                                                                  | 8.5  | 42        |
| 2  | The CysLT <sub>2</sub> R receptor mediates leukotriene C <sub>4</sub> -driven acute and chronic itch. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                      | 7.1  | 57        |
| 3  | The Discovery of Discrete Developmental Pathways Directing Constitutive and Induced Mast Cells in Mice. Journal of Immunology, 2021, 207, 359-361.                                                                                       | 0.8  | 2         |
| 4  | Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Theranostics, 2020, 10, 10743-10768.                                                                           | 10.0 | 107       |
| 5  | AAAAI Mast Cell Disorders Committee Work Group Report: Mast cell activation syndrome (MCAS)<br>diagnosis and management. Journal of Allergy and Clinical Immunology, 2019, 144, 883-896.                                                 | 2.9  | 72        |
| 6  | Mechanical Skin Injury Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion. Immunity, 2019, 50, 1262-1275.e4.                                                                                                            | 14.3 | 158       |
| 7  | Roles of cysteinyl leukotrienes and their receptors in immune cell-related functions. Advances in<br>Immunology, 2019, 142, 65-84.                                                                                                       | 2.2  | 33        |
| 8  | Cysteinyl leukotriene 2 receptor promotes endothelial permeability, tumor angiogenesis, and<br>metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>199-204.                       | 7.1  | 43        |
| 9  | Role of Cysteinyl Leukotriene 2 Receptor in Tumor Angiogenesis, Permeability and Metastasis. FASEB<br>Journal, 2019, 33, 489.7.                                                                                                          | 0.5  | 0         |
| 10 | Mentoring: An art and a responsibility. Journal of Allergy and Clinical Immunology, 2018, 141, 880-881.                                                                                                                                  | 2.9  | 5         |
| 11 | The cysteinyl leukotriene 3 receptor regulates expansion of IL-25–producing airway brush cells<br>leading to type 2 inflammation. Science Immunology, 2018, 3, .                                                                         | 11.9 | 125       |
| 12 | Advances in the Classification and Treatment of Mastocytosis: Current Status and Outlook toward the Future. Cancer Research, 2017, 77, 1261-1270.                                                                                        | 0.9  | 210       |
| 13 | Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. Journal of<br>Experimental Medicine, 2017, 214, 27-37.                                                                                       | 8.5  | 132       |
| 14 | Resolution of a human mast cell development conundrum. Blood, 2017, 130, 1777-1778.                                                                                                                                                      | 1.4  | 5         |
| 15 | CysLT1 Receptor Is Protective against Oxidative Stress in a Model of Irritant-Induced Asthma. Journal of Immunology, 2016, 197, 266-277.                                                                                                 | 0.8  | 20        |
| 16 | Leukotriene E <sub>4</sub> elicits respiratory epithelial cell mucin release through the<br>G-protein–coupled receptor, GPR99. Proceedings of the National Academy of Sciences of the United<br>States of America, 2016, 113, 6242-6247. | 7.1  | 99        |
| 17 | Expression profiling of constitutive mast cells reveals a unique identity within the immune system.<br>Nature Immunology, 2016, 17, 878-887.                                                                                             | 14.5 | 293       |
| 18 | B Cells Regulate CD4+ T Cell Responses to Papain following B Cell Receptor–Independent Papain<br>Uptake. Journal of Immunology, 2014, 193, 529-539.                                                                                      | 0.8  | 11        |

K FRANK AUSTEN

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Identification of GPR99 Protein as a Potential Third Cysteinyl Leukotriene Receptor with a Preference<br>for Leukotriene E4 Ligand. Journal of Biological Chemistry, 2013, 288, 10967-10972.                                             | 3.4  | 156       |
| 20 | The leukotriene E4 puzzle: Finding the missing pieces and revealing the pathobiologic implications.<br>Journal of Allergy and Clinical Immunology, 2009, 124, 406-414.                                                                   | 2.9  | 93        |
| 21 | The cysteinyl leukotrienes: Where do they come from? What are they? Where are they going?. Nature<br>Immunology, 2008, 9, 113-115.                                                                                                       | 14.5 | 40        |
| 22 | Doing What I Like. Annual Review of Immunology, 2008, 26, 1-28.                                                                                                                                                                          | 21.8 | 2         |
| 23 | Additional functions for the cysteinyl leukotrienes recognized through studies of inflammatory processes in null strains. Prostaglandins and Other Lipid Mediators, 2007, 83, 182-187.                                                   | 1.9  | 10        |
| 24 | Cysteinyl Leukotrienes Regulate Th2 Cell-Dependent Pulmonary Inflammation. Journal of Immunology,<br>2006, 176, 4440-4448.                                                                                                               | 0.8  | 132       |
| 25 | Targeted Gene Disruption Reveals the Role of the Cysteinyl Leukotriene 2 Receptor in Increased<br>Vascular Permeability and in Bleomycin-induced Pulmonary Fibrosis in Mice. Journal of Biological<br>Chemistry, 2004, 279, 46129-46134. | 3.4  | 134       |
| 26 | Acceptance of the Kober Medal It only gets better. Journal of Clinical Investigation, 2004, 114, 1177-1177.                                                                                                                              | 8.2  | 2         |
| 27 | Targeted Gene Disruption Reveals the Role of Cysteinyl Leukotriene 1 Receptor in the Enhanced<br>Vascular Permeability of Mice Undergoing Acute Inflammatory Responses. Journal of Biological<br>Chemistry, 2002, 277, 20820-20824.      | 3.4  | 119       |
| 28 | gp49B1-αvβ3 interaction inhibits antigen-induced mast cell activation. Nature Immunology, 2001, 2,<br>436-442.                                                                                                                           | 14.5 | 84        |
| 29 | Attenuated Zymosan-induced Peritoneal Vascular Permeability and IgE-dependent Passive Cutaneous<br>Anaphylaxis in Mice Lacking Leukotriene C4 Synthase. Journal of Biological Chemistry, 2001, 276,<br>22608-22613.                      | 3.4  | 133       |
| 30 | Mast Cell Mediation of Muscle and Pulmonary Injury Following Hindlimb Ischemia–Reperfusion.<br>Journal of Histochemistry and Cytochemistry, 2001, 49, 1055-1056.                                                                         | 2.5  | 26        |
| 31 | The Presence of v-abl-transformed V3 Mast Cells in the Lungs Augments Pulmonary Vascular<br>Permeability to Acid Aspiration. Journal of Histochemistry and Cytochemistry, 2001, 49, 793-794.                                             | 2.5  | Ο         |
| 32 | Increased Severity of Local and Systemic Anaphylactic Reactions in Gp49b1-Deficient Mice. Journal of Experimental Medicine, 2001, 194, 227-234.                                                                                          | 8.5  | 62        |
| 33 | The Diverse Roles of Mast Cells. Journal of Experimental Medicine, 2001, 194, F1-F6.                                                                                                                                                     | 8.5  | 180       |
| 34 | T Helper Cell Type 2 Cytokine–Mediated Comitogenic Responses and Ccr3 Expression during<br>Differentiation of Human Mast Cells in Vitro. Journal of Experimental Medicine, 1999, 190, 267-280.                                           | 8.5  | 323       |
| 35 | The Biochemical, Molecular, and Genomic Aspects of Leukotriene C4 Synthase. Proceedings of the Association of American Physicians, 1999, 111, 537-546.                                                                                   | 2.0  | 32        |
| 36 | Phospholipase A2 Enzymes in Eicosanoid Generation. Proceedings of the Association of American Physicians, 1999, 111, 516-524.                                                                                                            | 2.0  | 61        |

K FRANK AUSTEN

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Molecular Cloning of the Gene for Mouse Leukotriene-C4 Synthase. FEBS Journal, 1997, 248, 807-813.                                                                                                           | 0.2  | 17        |
| 38 | Molecular Cloning, Expression and Characterization of Mouse Leukotriene C4 Synthase. FEBS Journal, 1996, 238, 606-612.                                                                                       | 0.2  | 34        |
| 39 | Cytokine Regulation of Mast Cell Protease Phenotype and Arachidonic Acid Metabolism. Annals of the<br>New York Academy of Sciences, 1994, 744, 84-98.                                                        | 3.8  | 5         |
| 40 | Acute and chronic suppression of leukotriene B4 synthesis EX vivo in neutrophils from patients with rheumatoid arthritis beginning treatment with methotrexate. Arthritis and Rheumatism, 1992, 35, 376-384. | 6.7  | 99        |
| 41 | Inhibition of Leukotriene B <sub>4</sub> synthesis in neutrophils from patients with rheumatoid arthritis by a single oral dose of methotrexate. Arthritis and Rheumatism, 1990, 33, 1149-1155.              | 6.7  | 63        |
| 42 | Influence of the Fibroblast Environment on the Structure of Mast Cell Proteoglycans. Annals of the<br>New York Academy of Sciences, 1989, 556, 233-244.                                                      | 3.8  | 12        |
| 43 | Different Mast Cell Mediators Produced by Different Mast Cell Phenotypes. Novartis Foundation Symposium, 1989, 147, 36-52.                                                                                   | 1.1  | 2         |
| 44 | Perspectives on Additional Areas for Research in Leukotrienes. Annals of the New York Academy of<br>Sciences, 1988, 524, xi-xxv.                                                                             | 3.8  | 7         |
| 45 | Cyclosporin A Treatment of Refractory Rheumatoid Arthritis. Arthritis and Rheumatism, 1987, 30, 11-17.                                                                                                       | 6.7  | 134       |
| 46 | 2,000-Centigray total lymphoid irradiation for refractory rheumatoid arthritis. Arthritis and Rheumatism, 1987, 30, 980-987.                                                                                 | 6.7  | 15        |
| 47 | Effects of dietary supplementation with marine fish oil on leukocyte lipid mediator generation and function in rheumatoid arthritis. Arthritis and Rheumatism, 1987, 30, 988-997.                            | 6.7  | 207       |
| 48 | Specific release of proteoglycans from human natural killer cells during target lysis. Nature, 1985,<br>318, 289-291.                                                                                        | 27.8 | 148       |
| 49 | Total lymphoid irradiation therapy in refractory rheumatoid arthritis. Arthritis and Rheumatism, 1984, 27, 481-488.                                                                                          | 6.7  | 62        |
| 50 | The Complement Components of the Major Histocompatibility Locu. Critical Reviews in Biochemistry, 1984, 16, 1-19.                                                                                            | 7.5  | 37        |
| 51 | The role of antibody in the activation of the alternative complement pathway. Seminars in<br>Immunopathology, 1983, 6, 361-371.                                                                              | 4.0  | 92        |
| 52 | Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature, 1981, 293, 103-108.                                                                         | 27.8 | 495       |
| 53 | The Natural Modulation of the Amplification Phase of Complement Activation. Immunological<br>Reviews, 1976, 32, 12-25.                                                                                       | 6.0  | 16        |
| 54 | Intraarticular activation of the complement system in patients with juvenile rheumatoid arthritis.<br>Arthritis and Rheumatism, 1976, 19, 161-168.                                                           | 6.7  | 15        |

K FRANK AUSTEN

| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A Chemotactic Receptor for VAL(ALA)-GLY-SER-GLU on Human Eosinophil Polymorphonuclear<br>Leukocytes. Immunological Investigations, 1976, 5, 469-479.              | 0.8  | 14        |
| 56 | THE MODULATING INFLUENCE OF CYCLIC NUCLEOTIDES UPON LYMPHOCYTE-MEDIATED CYTOTOXICITY.<br>Journal of Experimental Medicine, 1973, 138, 381-393.                    | 8.5  | 180       |
| 57 | The Complement System of Man. New England Journal of Medicine, 1972, 287, 545-549.                                                                                | 27.0 | 55        |
| 58 | The Complement System of Man. New England Journal of Medicine, 1972, 287, 489-495.                                                                                | 27.0 | 279       |
| 59 | The Complement System of Man. New England Journal of Medicine, 1972, 287, 642-646.                                                                                | 27.0 | 88        |
| 60 | A NEUTROPHIL-IMMOBILIZING FACTOR DERIVED FROM HUMAN LEUKOCYTES. Journal of Experimental Medicine, 1972, 136, 1564-1580.                                           | 8.5  | 154       |
| 61 | The Complement System of Man. New England Journal of Medicine, 1972, 287, 592-596.                                                                                | 27.0 | 68        |
| 62 | IGE AND IGGA ANTIBODY-MEDIATED RELEASE OF HISTAMINE FROM RAT PERITONEAL CELLS. Journal of Experimental Medicine, 1971, 133, 772-784.                              | 8.5  | 54        |
| 63 | Chemical Mediators of Immediate Hypersensitivity. Hospital Practice (1995), 1971, 6, 79-89.                                                                       | 1.0  | 10        |
| 64 | MODULATION OF FUNCTION OF THE ACTIVATED FIRST COMPONENT OF COMPLEMENT BY A FRAGMENT DERIVED FROM SERUM. Journal of Experimental Medicine, 1971, 134, 1466-1484.   | 8.5  | 24        |
| 65 | IGE AND IGGA ANTIBODY-MEDIATED RELEASE OF HISTAMINE FROM RAT PERITONEAL CELLS. Journal of Experimental Medicine, 1971, 133, 752-771.                              | 8.5  | 87        |
| 66 | AN EOSINOPHIL LEUKOCYTE CHEMOTACTIC FACTOR OF ANAPHYLAXIS. Journal of Experimental Medicine, 1971, 133, 602-619.                                                  | 8.5  | 282       |
| 67 | Total hemolytic complement (CH50) and second component of complement (C′2hu) activity in serum<br>and synovial fluid. Arthritis and Rheumatism, 1965, 8, 219-232. | 6.7  | 76        |