
Ian R Henderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7159376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secreted Autotransporter Toxin (Sat) Mediates Innate Immune System Evasion. Frontiers in Immunology, 2022, 13, 844878.	2.2	10
2	The lipoprotein DolP affects cell separation in Escherichia coli, but not as an upstream regulator of NlpD. Microbiology (United Kingdom), 2022, 168, .	0.7	2
3	A method for increasing electroporation competence of Gram-negative clinical isolates by polymyxin B nonapeptide. Scientific Reports, 2022, 12, .	1.6	6
4	Glycine acylation and trafficking of a new class of bacterial lipoprotein by a composite secretion system. ELife, 2021, 10, .	2.8	7
5	BamA and BamD Are Essential for the Secretion of Trimeric Autotransporter Adhesins. Frontiers in Microbiology, 2021, 12, 628879.	1.5	4
6	DpaA Detaches Braun's Lipoprotein from Peptidoglycan. MBio, 2021, 12, .	1.8	22
7	Anti-LPS IgA and IgG Can Inhibit Serum Killing of Pseudomonas aeruginosa in Patients with Cystic Fibrosis. Infection and Immunity, 2021, 89, e0041221.	1.0	5
8	Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genetics, 2021, 17, e1009586.	1.5	16
9	Mice Deficient in T-bet Form Inducible NO Synthase–Positive Granulomas That Fail to Constrain <i>Salmonella</i> . Journal of Immunology, 2020, 205, 708-719.	0.4	6
10	Structure-Function Characterization of the Conserved Regulatory Mechanism of the Escherichia coli M48 Metalloprotease BepA. Journal of Bacteriology, 2020, 203, .	1.0	8
11	Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface. Nature Communications, 2020, 11, 851.	5.8	49
12	Iron is a ligand of SecA-like metal-binding domains in vivo. Journal of Biological Chemistry, 2020, 295, 7516-7528.	1.6	3
13	Structure of dual BON-domain protein DolP identifies phospholipid binding as a new mechanism for protein localisation. ELife, 2020, 9, .	2.8	25
14	Differential homotypic and heterotypic interactions of antigen 43 (Ag43) variants in autotransporter-mediated bacterial autoaggregation. Scientific Reports, 2019, 9, 11100.	1.6	16
15	Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models. Frontiers in Immunology, 2019, 10, 2569.	2.2	114
16	Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system. Nature Microbiology, 2019, 4, 1692-1705.	5.9	88
17	The Type III Secretion System (T3SS)-Translocon of Atypical Enteropathogenic Escherichia coli (aEPEC) Can Mediate Adherence. Frontiers in Microbiology, 2019, 10, 1527.	1.5	19
18	Bacterial flagellin promotes viral entry via an NF-kB and Toll Like Receptor 5 dependent pathway. Scientific Reports, 2019, 9, 7903.	1.6	16

#	Article	IF	CITATIONS
19	Complete genome sequence of Helicobacter pylori B128 7.13 and a singleâ€step method for the generation of unmarked mutations. Helicobacter, 2019, 24, e12587.	1.6	1
20	Salmonella enterica Serovar Typhimurium Travels to Mesenteric Lymph Nodes Both with Host Cells and Autonomously. Journal of Immunology, 2019, 202, 260-267.	0.4	39
21	Salmonella-induced thrombi in mice develop asynchronously in the spleen and liver and are not effective bacterial traps. Blood, 2019, 133, 600-604.	0.6	28
22	Organization and architecture of AggRâ€dependent promoters from enteroaggregative <i>Escherichia coli</i> . Molecular Microbiology, 2019, 111, 534-551.	1.2	10
23	The Essential Genome of <i>Escherichia coli</i> K-12. MBio, 2018, 9, .	1.8	242
24	Role of a single noncoding nucleotide in the evolution of an epidemic African clade of <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2614-E2623.	3.3	75
25	lgG Responses to Porins and Lipopolysaccharide within an Outer Membrane-Based Vaccine against Nontyphoidal <i>Salmonella</i> Develop at Discordant Rates. MBio, 2018, 9, .	1.8	31
26	Molecular basis for the folding of \hat{l}^2 -helical autotransporter passenger domains. Nature Communications, 2018, 9, 1395.	5.8	18
27	Draft Whole-Genome Sequences of 10 Atypical Enteropathogenic Escherichia coli Strains Isolated in Brazil. Microbiology Resource Announcements, 2018, 7, .	0.3	2
28	Intestinal CD103+CD11b+ cDC2 Conventional Dendritic Cells Are Required for Primary CD4+ T and B Cell Responses to Soluble Flagellin. Frontiers in Immunology, 2018, 9, 2409.	2.2	26
29	YraP Contributes to Cell Envelope Integrity and Virulence of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2018, 86, .	1.0	19
30	Humoral immunity to memory antigens and pathogens is maintained in patients with chronic kidney disease. PLoS ONE, 2018, 13, e0195730.	1.1	4
31	Complete Closed Genome Sequence of Nontoxigenic Invasive Corynebacterium diphtheriae bv. mitis Strain ISS 3319. Genome Announcements, 2018, 6, .	0.8	3
32	A Novel Method of Serum Resistance by Escherichia coli That Causes Urosepsis. MBio, 2018, 9, .	1.8	25
33	FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants. PLoS Biology, 2018, 16, e2006026.	2.6	17
34	The Use of Plasmapheresis in Patients with Bronchiectasis with Pseudomonas aeruginosa Infection and Inhibitory Antibodies. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 955-958.	2.5	11
35	Architectures of Lipid Transport Systems for the Bacterial Outer Membrane. Cell, 2017, 169, 273-285.e17.	13.5	194
36	Antigen Localization Influences the Magnitude and Kinetics of Endogenous Adaptive Immune Response to Recombinant Salmonella Vaccines. Infection and Immunity, 2017, 85, .	1.0	6

#	Article	IF	CITATIONS
37	MCE domain proteins: conserved inner membrane lipid-binding proteins required for outer membrane homeostasis. Scientific Reports, 2017, 7, 8608.	1.6	52
38	Contribution of factor H-Binding protein sequence to the cross-reactivity of meningococcal native outer membrane vesicle vaccines with over-expressed fHbp variant group 1. PLoS ONE, 2017, 12, e0181508.	1.1	7
39	Identification of the Autochaperone Domain in the Type Va Secretion System (T5aSS): Prevalent Feature of Autotransporters with a β-Helical Passenger. Frontiers in Microbiology, 2017, 8, 2607.	1.5	17
40	Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain. Microbial Genomics, 2017, 3, mgen000106.	1.0	33
41	Human platelet activation by <i>Escherichia coli</i> : roles for Fcl̂³RIIA and integrin αIIbl̂²3. Platelets, 2016, 27, 535-540.	1.1	66
42	A secretome view of colonisation factors in Shiga toxin-encoding <i>Escherichia coli</i> (STEC): from enterohaemorrhagic <i>E.Âcoli</i> (EHEC) to related enteropathotypes. FEMS Microbiology Letters, 2016, 363, fnw179.	0.7	29
43	Alternatives to antibiotics—a pipeline portfolio review. Lancet Infectious Diseases, The, 2016, 16, 239-251.	4.6	720
44	Molecular Characterization of the Vacuolating Autotransporter Toxin in Uropathogenic Escherichia coli. Journal of Bacteriology, 2016, 198, 1487-1498.	1.0	31
45	Crossâ€species chimeras reveal <scp>BamA POTRA</scp> and <scp>β</scp> â€barrel domains must be fineâ€tuned for efficient <scp>OMP</scp> insertion. Molecular Microbiology, 2015, 97, 646-659.	1.2	17
46	Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. European Journal of Immunology, 2015, 45, 2299-2311.	1.6	25
47	Expression of different bacterial cytotoxins is controlled by two global transcription factors, CRP and Fis, that co-operate in a shared-recruitment mechanism. Biochemical Journal, 2015, 466, 323-335.	1.7	19
48	Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. Journal of Clinical Investigation, 2015, 125, 4429-4446.	3.9	135
49	Natural and Vaccine-Mediated Immunity to Salmonella Typhimurium is Impaired by the Helminth Nippostrongylus brasiliensis. PLoS Neglected Tropical Diseases, 2014, 8, e3341.	1.3	27
50	A mortise–tenon joint in the transmembrane domain modulates autotransporter assembly into bacterial outer membranes. Nature Communications, 2014, 5, 4239.	5.8	46
51	Resolving <i>Salmonella</i> infection reveals dynamic and persisting changes in murine bone marrow progenitor cell phenotype and function. European Journal of Immunology, 2014, 44, 2318-2330.	1.6	11
52	B1b Cells Recognize Protective Antigens after Natural Infection and Vaccination. Frontiers in Immunology, 2014, 5, 535.	2.2	65
53	Differential timing of antibodyâ€mediated phagocytosis and cellâ€free killing of invasive African <i>Salmonella</i> allows immune evasion. European Journal of Immunology, 2014, 44, 1093-1098.	1.6	17
54	Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing. Journal of Experimental Medicine, 2014, 211, 1893-1904.	4.2	74

#	Article	IF	CITATIONS
55	Type 1 and 5 secretion systems and associated toxins. , 2013, , 499-532.		5
56	Laboratory adapted <i><scp>E</scp>scherichia coli</i> <scp>K</scp> â€12 becomes a pathogen of <i><scp>C</scp>aenorhabditis elegans</i> upon restoration of <scp>O</scp> antigen biosynthesis. Molecular Microbiology, 2013, 87, 939-950.	1.2	72
57	Genotypic and Phenotypic Characterisation of Enteroaggregative Escherichia coli from Children in Rio de Janeiro, Brazil. PLoS ONE, 2013, 8, e69971.	1.1	21
58	Mutational and Topological Analysis of the Escherichia coli BamA Protein. PLoS ONE, 2013, 8, e84512.	1.1	29
59	The Capsular Polysaccharide Vi from <i>Salmonella</i> Typhi Is a B1b Antigen. Journal of Immunology, 2012, 189, 5527-5532.	0.4	47
60	From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nature Reviews Microbiology, 2012, 10, 213-225.	13.6	184
61	Systemic Flagellin Immunization Stimulates Mucosal CD103+ Dendritic Cells and Drives Foxp3+ Regulatory T Cell and IgA Responses in the Mesenteric Lymph Node. Journal of Immunology, 2012, 189, 5745-5754.	0.4	54
62	A generalised module for the selective extracellular accumulation of recombinant proteins. Microbial Cell Factories, 2012, 11, 69.	1.9	34
63	Thymic Function Is Maintained during <i>Salmonella</i> -Induced Atrophy and Recovery. Journal of Immunology, 2012, 189, 4266-4274.	0.4	37
64	Discovery of an archetypal protein transport system in bacterial outer membranes. Nature Structural and Molecular Biology, 2012, 19, 506-510.	3.6	192
65	The evolution of the Escherichia coli phylogeny. Infection, Genetics and Evolution, 2012, 12, 214-226.	1.0	167
66	Transcription of the plasmidâ€encoded toxin gene from Enteroaggregative <i>Escherichia coli</i> is regulated by a novel coâ€activation mechanism involving CRP and Fis. Molecular Microbiology, 2011, 81, 179-191.	1.2	28
67	Structure and function of BamE within the outer membrane and the βâ€barrel assembly machine. EMBO Reports, 2011, 12, 123-128.	2.0	88
68	Soluble flagellin, FliC, induces an Agâ€specific Th2 response, yet promotes Tâ€betâ€regulated Th1 clearance of <i>Salmonella typhimurium</i> infection. European Journal of Immunology, 2011, 41, 1606-1618.	1.6	67
69	Tâ€zone localized monocyteâ€derived dendritic cells promote Th1 priming to <i>Salmonella</i> . European Journal of Immunology, 2011, 41, 2654-2665.	1.6	35
70	SadA, a Trimeric Autotransporter from Salmonella enterica Serovar Typhimurium, Can Promote Biofilm Formation and Provides Limited Protection against Infection. Infection and Immunity, 2011, 79, 4342-4352.	1.0	79
71	A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Research, 2011, 39, 7512-7528.	6.5	86
72	Size and Conformation Limits to Secretion of Disulfide-bonded Loops in Autotransporter Proteins. Journal of Biological Chemistry, 2011, 286, 42283-42291.	1.6	70

#	Article	IF	CITATIONS
73	The Essential Î ² -Barrel Assembly Machinery Complex Components BamD and BamA Are Required for Autotransporter Biogenesis. Journal of Bacteriology, 2011, 193, 4250-4253.	1.0	70
74	CD31 Is Required on CD4+ T Cells To Promote T Cell Survival during <i>Salmonella</i> Infection. Journal of Immunology, 2011, 187, 1553-1565.	0.4	29
75	Genome Sequence of the Emerging Pathogen <i>Aeromonas caviae</i> . Journal of Bacteriology, 2011, 193, 1286-1287.	1.0	39
76	Absent Bactericidal Activity of Mouse Serum against Invasive African Nontyphoidal <i>Salmonella</i> Results from Impaired Complement Function but Not a Lack of Antibody. Journal of Immunology, 2011, 186, 2365-2371.	0.4	47
77	Complete Genome Sequence of the Crohn's Disease-Associated Adherent-Invasive Escherichia coliStrain HM605. Journal of Bacteriology, 2011, 193, 4540-4540.	1.0	50
78	Secondary structure and 1H, 13C and 15N resonance assignments of BamE, a component of the outer membrane protein assembly machinery in Escherichia coli. Biomolecular NMR Assignments, 2010, 4, 179-181.	0.4	13
79	The unusual extended signal peptide region is not required for secretion and function of an Escherichia coli autotransporter. FEMS Microbiology Letters, 2010, 311, 133-139.	0.7	16
80	Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042. PLoS ONE, 2010, 5, e8801.	1.1	165
81	The Bacterial Intimins and Invasins: A Large and Novel Family of Secreted Proteins. PLoS ONE, 2010, 5, e14403.	1.1	50
82	Dysregulated Humoral Immunity to Nontyphoidal <i>Salmonella</i> in HIV-Infected African Adults. Science, 2010, 328, 508-512.	6.0	149
83	The De Novo Cytosine Methyltransferase DRM2 Requires Intact UBA Domains and a Catalytically Mutated Paralog DRM3 during RNA–Directed DNA Methylation in Arabidopsis thaliana. PLoS Genetics, 2010, 6, e1001182.	1.5	105
84	Interaction of FkpA, a peptidyl-prolyl <i>cis</i> / <i>trans</i> isomerase with EspP autotransporter protein. Gut Microbes, 2010, 1, 339-344.	4.3	47
85	A Commensal Gone Bad: Complete Genome Sequence of the Prototypical Enterotoxigenic <i>Escherichia coli</i> Strain H10407. Journal of Bacteriology, 2010, 192, 5822-5831.	1.0	168
86	The porin OmpD from nontyphoidal <i>Salmonella</i> is a key target for a protective B1b cell antibody response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9803-9808.	3.3	153
87	Complete Genome Sequence and Comparative Genome Analysis of Enteropathogenic <i>Escherichia coli</i> O127:H6 Strain E2348/69. Journal of Bacteriology, 2009, 191, 347-354.	1.0	299
88	Roles of Periplasmic Chaperone Proteins in the Biogenesis of Serine Protease Autotransporters of <i>Enterobacteriaceae</i> . Journal of Bacteriology, 2009, 191, 6571-6583.	1.0	118
89	The Pic Protease of Enteroaggregative <i>Escherichia coli</i> Promotes Intestinal Colonization and Growth in the Presence of Mucin. Infection and Immunity, 2009, 77, 2465-2473.	1.0	144
90	Secondary structure and 1H, 13C and 15N backbone resonance assignments of BamC, a component of the outer membrane protein assembly machinery in Escherichia coli. Biomolecular NMR Assignments, 2009, 3, 203-206.	0.4	26

#	Article	IF	CITATIONS
91	Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nature Reviews Microbiology, 2009, 7, 206-214.	13.6	320
92	Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends in Microbiology, 2009, 17, 139-145.	3.5	311
93	Outer membrane translocation: numerical protein secretion nomenclature in question in mycobacteria. Trends in Microbiology, 2009, 17, 338-340.	3.5	21
94	Interaction of enteroaggregative <i>Escherichia coli</i> with salad leaves. Environmental Microbiology Reports, 2009, 1, 234-239.	1.0	36
95	TheEscherichia colibiofilm-promoting protein Antigen 43 does not contribute to intestinal colonization. FEMS Microbiology Letters, 2008, 284, 237-246.	0.7	17
96	Fold and function of polypeptide transportâ€associated domains responsible for delivering unfolded proteins to membranes. Molecular Microbiology, 2008, 68, 1216-1227.	1.2	142
97	Common themes and variations in serine protease autotransporters. Trends in Microbiology, 2008, 16, 370-379.	3.5	60
98	The Pangenome Structure of <i>Escherichia coli</i> : Comparative Genomic Analysis of <i>E. coli</i> Commensal and Pathogenic Isolates. Journal of Bacteriology, 2008, 190, 6881-6893.	1.0	763
99	Regulation and Function of Ag43 (Flu). Annual Review of Microbiology, 2008, 62, 153-169.	2.9	139
100	SRA-Domain Proteins Required for DRM2-Mediated De Novo DNA Methylation. PLoS Genetics, 2008, 4, e1000280.	1.5	141
101	Dynamic Regulation of ARGONAUTE4 within Multiple Nuclear Bodies in Arabidopsis thaliana. PLoS Genetics, 2008, 4, e27.	1.5	73
102	<i>Salmonella</i> Induces a Switched Antibody Response without Germinal Centers That Impedes the Extracellular Spread of Infection. Journal of Immunology, 2007, 178, 6200-6207.	0.4	173
103	Role of RNA polymerase IV in plant small RNA metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4536-4541.	3.3	256
104	A conserved extended signal peptide region directs posttranslational protein translocation via a novel mechanism. Microbiology (United Kingdom), 2007, 153, 59-70.	0.7	58
105	Epigenetic inheritance in plants. Nature, 2007, 447, 418-424.	13.7	737
106	Secondary structure and 1H, 13C and 15N resonance assignments of the Escherichia coli YaeT POTRA domain. Biomolecular NMR Assignments, 2007, 1, 113-115.	0.4	4
107	An ARGONAUTE4-Containing Nuclear Processing Center Colocalized with Cajal Bodies in Arabidopsis thaliana. Cell, 2006, 126, 93-106.	13.5	350
108	Type III secretion: what's in a name?. Trends in Microbiology, 2006, 14, 157-160.	3.5	57

#	Article	IF	CITATIONS
109	Bacterial secretion systems. , 2006, , 59-98.		Ο
110	Antigen 43, a phase-variable bipartite outer membrane protein, determines colony morphology and autoaggregation in Escherichia coli K-12. FEMS Microbiology Letters, 2006, 149, 115-120.	0.7	122
111	Weapons of mass destruction: virulence factors of the global killer EnterotoxigenicEscherichia coli. FEMS Microbiology Letters, 2006, 263, 10-20.	0.7	122
112	The unusual extended signal peptide region of the type V secretion system is phylogenetically restricted. FEMS Microbiology Letters, 2006, 264, 22-30.	0.7	43
113	Phylogenetic Comparisons Reveal Multiple Acquisitions of the Toxin Genes by Enterotoxigenic Escherichia coli Strains of Different Evolutionary Lineages. Journal of Clinical Microbiology, 2006, 44, 4528-4536.	1.8	74
114	Autotransporter Proteins. EcoSal Plus, 2005, 1, .	2.1	3
115	Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics, 2005, 6, 351-360.	7.7	820
116	Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 223-253.	1.9	40
117	Distribution of the Serine Protease Autotransporters of the Enterobacteriaceae among Extraintestinal Clinical Isolates of Escherichia coli. Journal of Clinical Microbiology, 2005, 43, 4076-4082.	1.8	50
118	Prevalence of Pathogenicity Island II CFT073 Genes among Extraintestinal Clinical Isolates of Escherichia coli. Journal of Clinical Microbiology, 2005, 43, 2425-2434.	1.8	45
119	Protein secretion systems in Fusobacterium nucleatum: Genomic identification of Type 4 piliation and complete Type V pathways brings new insight into mechanisms of pathogenesis. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1713, 92-112.	1.4	57
120	Type V Protein Secretion Pathway: the Autotransporter Story. Microbiology and Molecular Biology Reviews, 2004, 68, 692-744.	2.9	696
121	Monitor – biology. Drug Discovery Today, 2004, 9, 240-243.	3.2	1
122	PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiology Letters, 2004, 230, 73-83.	0.7	83
123	The general secretory pathway: a general misnomer?. Trends in Microbiology, 2004, 12, 306-309.	3.5	69
124	The autotransporter secretion system. Research in Microbiology, 2004, 155, 53-60.	1.0	102
125	Type V protein secretion: simplicity gone awry?. Current Issues in Molecular Biology, 2004, 6, 111-24.	1.0	45
126	Genomic analysis of secretion systems. Current Opinion in Microbiology, 2003, 6, 519-527.	2.3	150

#	Article	IF	CITATIONS
127	A novel dispersin protein in enteroaggregative Escherichia coli. Journal of Clinical Investigation, 2002, 110, 1329-1337.	3.9	230
128	Polymorphic proteins of Chlamydia spp. – autotransporters beyond the Proteobacteria. Trends in Microbiology, 2001, 9, 573-578.	3.5	115
129	Virulence Functions of Autotransporter Proteins. Infection and Immunity, 2001, 69, 1231-1243.	1.0	398
130	Identification of Sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Molecular Microbiology, 2000, 38, 53-66.	1.2	183
131	The sigA Gene Which Is Borne on the she Pathogenicity Island of Shigella flexneri 2a Encodes an Exported Cytopathic Protease Involved in Intestinal Fluid Accumulation. Infection and Immunity, 2000, 68, 2457-2463.	1.0	118
132	Renaming protein secretion in the Gram-negative bacteria. Trends in Microbiology, 2000, 8, 352.	3.5	37
133	Autotransporter proteins, evolution and redefining protein secretion. Trends in Microbiology, 2000, 8, 529-532.	3.5	102
134	Autotransporter proteins, evolution and redefining protein secretion: Response. Trends in Microbiology, 2000, 8, 534-535.	3.5	21
135	A conserved motif in the hexosyltransferases. Molecular Microbiology, 1999, 33, 222-222.	1.2	3
136	Molecular switches - the ON and OFF of bacterial phase variation. Molecular Microbiology, 1999, 33, 919-932.	1.2	443
137	Involvement of the Enteroaggregative <i>Escherichia coli</i> Plasmid-Encoded Toxin in Causing Human Intestinal Damage. Infection and Immunity, 1999, 67, 5338-5344.	1.0	95
138	Characterization of Pic, a Secreted Protease of <i>Shigella flexneri</i> and Enteroaggregative <i>Escherichia coli</i> . Infection and Immunity, 1999, 67, 5587-5596.	1.0	322
139	Phylogenetic Analysis of Enteroaggregative and Diffusely Adherent <i>Escherichia coli</i> . Infection and Immunity, 1999, 67, 2692-2699.	1.0	241
140	Organization of Biogenesis Genes for Aggregative Adherence Fimbria II Defines a Virulence Gene Cluster in Enteroaggregative <i>Escherichia coli</i> . Journal of Bacteriology, 1999, 181, 1779-1785.	1.0	95
141	The Major Phase-Variable Outer Membrane Protein of <i>Escherichia coli</i> Structurally Resembles the Immunoglobulin A1 Protease Class of Exported Protein and Is Regulated by a Novel Mechanism Involving Dam and OxyR. Journal of Bacteriology, 1999, 181, 2132-2141.	1.0	143
142	The great escape: structure and function of the autotransporter proteins. Trends in Microbiology, 1998, 6, 370-378.	3.5	503
143	Pet, an Autotransporter Enterotoxin from Enteroaggregative <i>Escherichia coli</i> . Infection and Immunity, 1998, 66, 3155-3163.	1.0	233
144	A Novel Regulatory Mechanism for a Novel Phase-Variable Outer Membrane Protein of Escherichia coli. Advances in Experimental Medicine and Biology, 1997, 412, 349-355.	0.8	46

#	Article	IF	CITATIONS
145	The autoregulatory protein Mor and OxyR are identical. Microbiology (United Kingdom), 1997, 143, 1482-1482.	0.7	6
146	Phase-variable outer membrane proteins inEscherichia coli. FEMS Immunology and Medical Microbiology, 1996, 16, 63-76.	2.7	77
147	SARS-CoV-2 Spike- and Nucleoprotein-Specific Antibodies Induced After Vaccination or Infection Promote Classical Complement Activation. Frontiers in Immunology, 0, 13, .	2.2	12