Aimée Zuniga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7158830/publications.pdf

Version: 2024-02-01

39 papers 4,490 citations

257450 24 h-index 315739 38 g-index

44 all docs

44 docs citations

44 times ranked

5223 citing authors

#	Article	lF	CITATIONS
1	Rearrangements of the Cytoskeleton and Cell Contacts Induce Process Formation during Differentiation of Conditionally Immortalized Mouse Podocyte Cell Lines. Experimental Cell Research, 1997, 236, 248-258.	2.6	810
2	Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature, 1999, 401, 598-602.	27.8	428
3	Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nature Reviews Genetics, 2009, 10, 845-858.	16.3	391
4	The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Human Molecular Genetics, 2000, 9, 695-702.	2.9	370
5	Progression of Vertebrate Limb Development Through SHH-Mediated Counteraction of GLI3. Science, 2002, 298, 827-830.	12.6	354
6	<i>Gremlin</i> -mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development (Cambridge), 2004, 131, 3401-3410.	2. 5	323
7	Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10494-10499.	7.1	265
8	Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mechanisms of Development, 1999, 87, 45-56.	1.7	186
9	A Self-Regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning. Science, 2009, 323, 1050-1053.	12.6	181
10	Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes and Development, 2004, 18, 1553-1564.	5. 9	131
11	Next generation limb development and evolution: old questions, new perspectives. Development (Cambridge), 2015, 142, 3810-3820.	2.5	119
12	Differential regulation of gene expression in the digit forming area of the mouse limb bud by SHH and gremlin 1/FGF-mediated epithelial-mesenchymal signalling. Development (Cambridge), 2006, 133, 3419-3428.	2. 5	93
13	SHH propagates distal limb bud development by enhancing CYP26B1-mediated retinoic acid clearance via AER-FGF signalling. Development (Cambridge), 2011, 138, 1913-1923.	2,5	90
14	Expression of Alternatively Spliced bFGF First Coding Exons and Antisense mRNAs during Chicken Embryogenesis. Developmental Biology, 1993, 157, 110-118.	2.0	81
15	Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. Cell and Tissue Research, 1999, 296, 85-93.	2.9	62
16	Mouse Twist is required for fibroblast growth factor-mediated epithelial–mesenchymal signalling and cell survival during limb morphogenesis. Mechanisms of Development, 2002, 114, 51-59.	1.7	52
17	HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development. Cell Reports, 2017, 19, 1602-1613.	6.4	50
18	Formin1 disruption confers oligodactylism and alters Bmp signaling. Human Molecular Genetics, 2009, 18, 2472-2482.	2.9	45

#	Article	IF	CITATIONS
19	The molecular basis of human congenital limb malformations. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 803-822.	5.9	42
20	Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo. BMC Genomics, 2010, 11, 696.	2.8	41
21	FGF2Signaling Is Required for the Development of Neuronal Circuits Regulating Blood Pressure. Circulation Research, 2002, 90, .	4.5	38
22	To BMP or not to BMP during vertebrate limb bud development. Seminars in Cell and Developmental Biology, 2014, 32, 119-127.	5.0	38
23	Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1expression in mouse limb buds. BMC Developmental Biology, 2012, 12, 23.	2.1	35
24	Molecular signatures identify immature mesenchymal progenitors in early mouse limb buds that respond differentially to morphogen signaling. Development (Cambridge), 2019, 146, .	2.5	29
25	TGFÎ 2 -facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biology, 2018, 8, .	3.6	28
26	Genetic interaction of Gli3 and Alx4 during limb development. International Journal of Developmental Biology, 2005, 49, 443-448.	0.6	27
27	Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Current Topics in Developmental Biology, 2020, 139, 61-88.	2.2	24
28	NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development. PLoS ONE, 2015, 10, e0136566.	2.5	23
29	The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development. Differentiation, 2013, 85, 121-130.	1.9	22
30	Serpine2/PN-1 Is Required for Proliferative Expansion of Pre-Neoplastic Lesions and Malignant Progression to Medulloblastoma. PLoS ONE, 2015, 10, e0124870.	2.5	22
31	altFGF-2, A Novel ER-Associated FGF-2 Protein Isoform: Its Embryonic Distribution and Functional Analysis during Neural Tube Development. Developmental Biology, 1996, 180, 680-692.	2.0	20
32	Spatial regulation by multiple Gremlin1 enhancers provides digit development with cis-regulatory robustness and evolutionary plasticity. Nature Communications, 2021, 12, 5557.	12.8	17
33	Gli3 utilizes Hand2 to synergistically regulate tissue-specific transcriptional networks. ELife, 2020, 9, .	6.0	15
34	Shh and Gremlin1 chromosomal landscapes in development and disease. Current Opinion in Genetics and Development, 2007, 17, 428-434.	3.3	13
35	In Turing's hands—the making of digits. Science, 2014, 345, 516-517.	12.6	7
36	Globalisation reaches gene regulation: the case for vertebrate limb development. Current Opinion in Genetics and Development, 2005, 15, 403-409.	3.3	6

AIMéE ZUNIGA

#	Article	IF	CITATIONS
37	Conserved and species-specific chromatin remodeling and regulatory dynamics during mouse and chicken limb bud development. Nature Communications, 2021, 12, 5685.	12.8	6
38	SMAD4 target genes are part of a transcriptional network that integrates the response to BMP and SHH signaling during early limb bud patterning. Development (Cambridge), 2021 , 148 , .	2.5	4
39	Limb Pattern Formation. , 2006, , 79-92.		O