Birgitt Schüele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7158465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenotypic Heterogeneity among GBA p.R202X Carriers in Lewy Body Spectrum Disorders. Biomedicines, 2022, 10, 160.	3.2	0
2	Effect of LRRK2 protein and activity on stimulated cytokines in human monocytes and macrophages. Npj Parkinson's Disease, 2022, 8, 34.	5.3	18
3	lsogenic human SNCA gene dosage induced pluripotent stem cells to model Parkinson's disease. Stem Cell Research, 2022, 60, 102733.	0.7	3
4	Multiplex CRISPR/Cas9-Guided No-Amp Targeted Sequencing Panel for Spinocerebellar Ataxia Repeat Expansions. Neuromethods, 2022, , 95-120.	0.3	2
5	Multiplex imaging of human induced pluripotent stem cell-derived neurons with CO-Detection by indEXing (CODEX) technology. Journal of Neuroscience Methods, 2022, 378, 109653.	2.5	2
6	Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. International Journal of Molecular Sciences, 2021, 22, 1045.	4.1	15
7	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	5.3	30
8	Short-term deceleration capacity of heart rate: a sensitive marker of cardiac autonomic dysfunction in idiopathic Parkinson's disease. Clinical Autonomic Research, 2021, 31, 729-736.	2.5	2
9	The commercial genetic testing landscape for Parkinson's disease. Parkinsonism and Related Disorders, 2021, 92, 107-111.	2.2	16
10	Embryoid Body Formation from Mouse and Human Pluripotent Stem Cells for Transplantation to Study Brain Microenvironment and Cellular Differentiation. Methods in Molecular Biology, 2021, , 1.	0.9	1
11	Exosome/microvesicle content is altered in leucineâ€rich repeat kinase 2 mutant induced pluripotent stem cellâ€derived neural cells. Journal of Comparative Neurology, 2020, 528, 1203-1215.	1.6	11
12	Nonsteroidal <scp>Antiâ€inflammatory</scp> Use and <scp><i>LRRK2</i></scp> Parkinson's Disease Penetrance. Movement Disorders, 2020, 35, 1755-1764.	3.9	57
13	Loss-of-Function NUBPL Mutation May Link Parkinson's Disease to Recessive Complex I Deficiency. Frontiers in Neurology, 2020, 11, 555961.	2.4	5
14	The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. International Journal of Molecular Sciences, 2020, 21, 5724.	4.1	37
15	Heart rate variability biomarkers of leucine-rich repeat kinase 2-associated Parkinson's disease. , 2020, ,		0
16	Report of the Phenotype of a Patient with Roberts Syndrome and a Rare ESCO2 Variant. Journal of Pediatric Genetics, 2020, 09, 058-062.	0.7	1
17	Pulse-Field capillary electrophoresis of repeat-primed PCR amplicons for analysis of large repeats in Spinocerebellar Ataxia Type 10. PLoS ONE, 2020, 15, e0228789.	2.5	10
18	Increased markers of cardiac vagal activity in leucine-rich repeat kinase 2-associated Parkinson's disease. Clinical Autonomic Research, 2019, 29, 603-614.	2.5	10

BIRGITT SCHüELE

#	Article	IF	CITATIONS
19	LRRK2 modifies \hat{I}_{\pm} -syn pathology and spread in mouse models and human neurons. Acta Neuropathologica, 2019, 137, 961-980.	7.7	142
20	LRRK2â€mediated Rab10 phosphorylation in immune cells from Parkinson's disease patients. Movement Disorders, 2019, 34, 406-415.	3.9	83
21	Alpha-Synuclein Physiology and Pathology: A Perspective on Cellular Structures and Organelles. Frontiers in Neuroscience, 2019, 13, 1399.	2.8	104
22	Clustering of motor and nonmotor traits in leucineâ€rich repeat kinase 2 G2019S Parkinson's disease nonparkinsonian relatives: A multicenter family study. Movement Disorders, 2018, 33, 960-965.	3.9	12
23	LRRK2 p.lle1371Val Mutation in a Case with Neuropathologically Confirmed Multi-System Atrophy. Journal of Parkinson's Disease, 2018, 8, 93-100.	2.8	18
24	A pathway for Parkinson's Disease LRRK2 kinase to block primary cilia and Sonic hedgehog signaling in the brain. ELife, 2018, 7, .	6.0	170
25	Genetic fine-mapping of the Iowan SNCA gene triplication in a patient with Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 18.	5.3	28
26	Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Frontiers in Neuroscience, 2018, 12, 199.	2.8	19
27	Heart rate variability in leucineâ€rich repeat kinase 2â€associated Parkinson's disease. Movement Disorders, 2017, 32, 610-614.	3.9	18
28	Inflammatory profile discriminates clinical subtypes in <i>LRRK2</i> â€associated Parkinson's disease. European Journal of Neurology, 2017, 24, 427.	3.3	56
29	LRRK2 C2019S-induced mitochondrial DNA damage is LRRK2 kinase dependent and inhibition restores mtDNA integrity in Parkinson's disease. Human Molecular Genetics, 2017, 26, 4340-4351.	2.9	76
30	β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson's disease. Science, 2017, 357, 891-898.	12.6	341
31	Parkinson's disease associated with pure ATXN10 repeat expansion. Npj Parkinson's Disease, 2017, 3, 27.	5.3	54
32	Derivation of Leptomeninges Explant Cultures from Postmortem Human Brain Donors. Journal of Visualized Experiments, 2017, , .	0.3	1
33	Penetrance estimate of <i>LRRK2</i> p.G2019S mutation in individuals of nonâ€Ashkenazi Jewish ancestry. Movement Disorders, 2017, 32, 1432-1438.	3.9	126
34	Inflammatory profile in LRRK2-associated prodromal and clinical PD. Journal of Neuroinflammation, 2016, 13, 122.	7.2	57
35	Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease. Cell Stem Cell, 2016, 19, 709-724.	11.1	371
36	ls <i>PARKIN</i> parkinsonism a cancer predisposition syndrome?. Neurology: Genetics, 2015, 1, e31.	1.9	3

BIRGITT SCHÃ¹/4ELE

#	Article	IF	CITATIONS
37	Comparative genomic hybridization solves a 14â€yearâ€old <scp><i>PARKIN</i></scp> mystery. Annals of Neurology, 2015, 78, 663-664.	5.3	3
38	Clinical Correlations With Lewy Body Pathology in <i>LRRK2</i> -Related Parkinson Disease. JAMA Neurology, 2015, 72, 100.	9.0	272
39	Multisystem Lewy body disease and the other parkinsonian disorders. Nature Genetics, 2015, 47, 1378-1384.	21.4	49
40	Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death and Disease, 2015, 6, e1994-e1994.	6.3	125
41	Higher Vulnerability and Stress Sensitivity of Neuronal Precursor Cells Carrying an Alpha-Synuclein Gene Triplication. PLoS ONE, 2014, 9, e112413.	2.5	73
42	Michael J. Fox Foundation LRRK2 Consortium: geographical differences in returning genetic research data to study participants. Genetics in Medicine, 2014, 16, 644-645.	2.4	7
43	DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research, 2014, 42, e34-e34.	14.5	94
44	LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: Reversal by gene correction. Neurobiology of Disease, 2014, 62, 381-386.	4.4	235
45	Discovery of functional non-coding conserved regions in the α-synuclein gene locus. F1000Research, 2014, 3, 259.	1.6	7
46	Systems-Based Analyses of Brain Regions Functionally Impacted in Parkinson's Disease Reveals Underlying Causal Mechanisms. PLoS ONE, 2014, 9, e102909.	2.5	74
47	Identification and Rescue of α-Synuclein Toxicity in Parkinson Patient–Derived Neurons. Science, 2013, 342, 983-987.	12.6	416
48	Skin Punch Biopsy Explant Culture for Derivation of Primary Human Fibroblasts. Journal of Visualized Experiments, 2013, , e3779.	0.3	107
49	Elevated Alpha-Synuclein Impairs Innate Immune Cell Function and Provides a Potential Peripheral Biomarker for Parkinson's Disease. PLoS ONE, 2013, 8, e71634.	2.5	97
50	Small Molecules Greatly Improve Conversion of Human-Induced Pluripotent Stem Cells to the Neuronal Lineage. Stem Cells International, 2012, 2012, 1-12.	2.5	56
51	LRRK2 Mutant iPSC-Derived DA Neurons Demonstrate Increased Susceptibility to Oxidative Stress. Cell Stem Cell, 2011, 8, 267-280.	11.1	668
52	SNCA Triplication Parkinson's Patient's iPSC-derived DA Neurons Accumulate α-Synuclein and Are Susceptible to Oxidative Stress. PLoS ONE, 2011, 6, e26159.	2.5	257
53	Call for participation in the neurogenetics consortium within the Human Variome Project. Neurogenetics, 2011, 12, 169-173.	1.4	5
54	Mitochondrial Dysfunction in Skin Fibroblasts from a Parkinson's Disease Patient with an alpha-Synuclein Triplication. Journal of Parkinson's Disease, 2011, 1, 175-183.	2.8	24

BIRGITT SCHÃ¹/4ELE

#	Article	IF	CITATIONS
55	Can cellular models revolutionize drug discovery in Parkinson's disease?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 1043-1051.	3.8	60
56	Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: A biological link between Gaucher disease and parkinsonism. NeuroToxicology, 2009, 30, 1127-1132.	3.0	164
57	Phenotypic spectrum and sex effects in eleven myoclonusâ€dystonia families with εâ€sarcoglycan mutations. Movement Disorders, 2008, 23, 588-592.	3.9	66
58	Severe congenital encephalopathy caused by <i>MECP2 </i> null mutations in males: central hypoxia and reduced neuronal dendritic structure. Clinical Genetics, 2008, 74, 116-126.	2.0	75
59	Novel features in a patient homozygous for the L347P mutation in the PINK1 gene. Parkinsonism and Related Disorders, 2007, 13, 359-361.	2.2	12
60	DLX5 and DLX6 Expression Is Biallelic and Not Modulated by MeCP2 Deficiency. American Journal of Human Genetics, 2007, 81, 492-506.	6.2	48
61	Phenotypic variation in a large Swedish pedigree due toSNCAduplication and triplication. Neurology, 2007, 68, 916-922.	1.1	370
62	Parkingene variations and parkinsonism: Association does not imply causation. Annals of Neurology, 2007, 61, 4-6.	5.3	6
63	Intrafamilial phenotypic and genetic heterogeneity of dystonia. Journal of the Neurological Sciences, 2006, 250, 92-96.	0.6	16
64	PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism. European Journal of Human Genetics, 2005, 13, 1086-1093.	2.8	132
65	Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27;q11.2) associated with Prader-Willi syndrome. BMC Medical Genetics, 2005, 6, 18.	2.1	55
66	Inactivating Mutations in ESCO2 Cause SC Phocomelia and Roberts Syndrome: No Phenotype-Genotype Correlation. American Journal of Human Genetics, 2005, 77, 1117-1128.	6.2	122
67	Myoclonus–dystonia: Detection of novel, recurrent, and de novo <i>SGCE</i> mutations. Neurology, 2004, 62, 1229-1231.	1.1	54
68	Genetic heterogeneity in ten families with myoclonus-dystonia. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1181-1185.	1.9	55
69	<i>Parkin</i> gene alterations in hepatocellular carcinoma. Genes Chromosomes and Cancer, 2004, 40, 85-96.	2.8	105
70	Clinical and genetic features of myoclonus-dystonia in 3 cases: A video presentation. Movement Disorders, 2004, 19, 231-234.	3.9	30
71	Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene, 2003, 22, 8370-8378.	5.9	191
72	Evidence That Paternal Expression of the ε-Sarcoglycan Gene Accounts for Reduced Penetrance in Myoclonus-Dystonia. American Journal of Human Genetics, 2002, 71, 1303-1311.	6.2	178

#	Article	IF	CITATIONS
73	Role ofSCA2mutations in early- and late-onset dopa-responsive parkinsonism. Annals of Neurology, 2002, 52, 257-258.	5.3	16
74	Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevistadpoles. European Journal of Neuroscience, 2001, 13, 1093-1100.	2.6	22
75	Slice Culture of the Olfactory Bulb of Xenopus laevis Tadpoles. Chemical Senses, 2001, 26, 399-407.	2.0	8