Lionel B Ivashkiv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7157766/publications.pdf Version: 2024-02-01

LIONEL R WASHKIN

#	Article	IF	CITATIONS
1	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	14.3	4,638
2	Regulation of type I interferon responses. Nature Reviews Immunology, 2014, 14, 36-49.	22.7	2,400
3	TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nature Reviews Rheumatology, 2016, 12, 49-62.	8.0	934
4	Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature, 2017, 542, 110-114.	27.8	767
5	IFNÎ ³ : signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nature Reviews Immunology, 2018, 18, 545-558.	22.7	753
6	Cross-regulation of Signaling Pathways by Interferon-γ: Implications for Immune Responses and Autoimmune Diseases. Immunity, 2009, 31, 539-550.	14.3	733
7	TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon–response genes. Nature Immunology, 2008, 9, 378-387.	14.5	388
8	IFN-Î ³ Suppresses IL-10 Production and Synergizes with TLR2 by Regulating GSK3 and CREB/AP-1 Proteins. Immunity, 2006, 24, 563-574.	14.3	370
9	Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nature Communications, 2018, 9, 789.	12.8	368
10	Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nature Immunology, 2012, 13, 642-650.	14.5	361
11	Interferon target-gene expression and epigenomic signatures in health and disease. Nature Immunology, 2019, 20, 1574-1583.	14.5	316
12	Epigenetic regulation of macrophage polarization and function. Trends in Immunology, 2013, 34, 216-223.	6.8	307
13	Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nature Communications, 2018, 9, 791.	12.8	284
14	Role of STAT3 in Type I Interferon Responses. Journal of Biological Chemistry, 2006, 281, 14111-14118.	3.4	280
15	Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nature Medicine, 2009, 15, 1066-1071.	30.7	270
16	Regulation of interferon and Tollâ€like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunological Reviews, 2008, 226, 41-56.	6.0	261
17	Synergistic Activation of Inflammatory Cytokine Genes by Interferon-Î ³ -Induced Chromatin Remodeling and Toll-like Receptor Signaling. Immunity, 2013, 39, 454-469.	14.3	250
18	Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. Journal of Leukocyte Biology, 2007, 82, 237-243.	3.3	247

#	Article	IF	CITATIONS
19	Interferon- \hat{I}^3 regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nature Immunology, 2015, 16, 838-849.	14.5	239
20	Integrated Regulation of Toll-like Receptor Responses by Notch and Interferon-Î ³ Pathways. Immunity, 2008, 29, 691-703.	14.3	235
21	Twist mediates suppression of inflammation by type I IFNs and Axl. Journal of Experimental Medicine, 2006, 203, 1891-1901.	8.5	207
22	Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nature Immunology, 2017, 18, 1104-1116.	14.5	204
23	Sensitization of IFN-Î ³ Jak-STAT signaling during macrophage activation. Nature Immunology, 2002, 3, 859-866.	14.5	194
24	Cross-regulation of signaling by ITAM-associated receptors. Nature Immunology, 2009, 10, 340-347.	14.5	183
25	Tumor necrosis factor induces GSK3 kinase–mediated cross-tolerance to endotoxin in macrophages. Nature Immunology, 2011, 12, 607-615.	14.5	160
26	TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. Journal of Experimental Medicine, 2012, 209, 319-334.	8.5	157
27	Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine Learning Integration of Synovial Histologic Features and <scp>RNA</scp> Sequencing Data. Arthritis and Rheumatology, 2018, 70, 690-701.	5.6	157
28	Inhibition of IFN-Î ³ Signaling by Glucocorticoids. Journal of Immunology, 2003, 170, 4833-4839.	0.8	156
29	The hypoxia–lactate axis tempers inflammation. Nature Reviews Immunology, 2020, 20, 85-86.	22.7	154
30	Interferon-Î ³ Represses M2 Gene Expression in Human Macrophages by Disassembling Enhancers Bound by the Transcription Factor MAF. Immunity, 2017, 47, 235-250.e4.	14.3	153
31	FcγRIII-Dependent Inhibition of Interferon-γ Responses Mediates Suppressive Effects of Intravenous Immune Globulin. Immunity, 2007, 26, 67-78.	14.3	147
32	HBEGF ⁺ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Science Translational Medicine, 2019, 11, .	12.4	143
33	Inhibition of RANK Expression and Osteoclastogenesis by TLRs and IFN-Î ³ in Human Osteoclast Precursors. Journal of Immunology, 2009, 183, 7223-7233.	0.8	140
34	Inflammatory signaling in macrophages: Transitions from acute to tolerant and alternative activation states. European Journal of Immunology, 2011, 41, 2477-2481.	2.9	139
35	Reprogramming of IL-10 Activity and Signaling by IFN-γ. Journal of Immunology, 2003, 171, 5034-5041.	0.8	134
36	Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3012-3017.	7.1	133

#	Article	IF	CITATIONS
37	IFN-γ abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19438-19443.	7.1	132
38	A Unique Hybrid Renal Mononuclear Phagocyte Activation Phenotype in Murine Systemic Lupus Erythematosus Nephritis. Journal of Immunology, 2011, 186, 4994-5003.	0.8	132
39	Cytokines and STATs: How can signals achieve specificity?. Immunity, 1995, 3, 1-4.	14.3	129
40	iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. Journal of Clinical Investigation, 2013, 123, 928-32.	8.2	129
41	Indirect Inhibition of Toll-like Receptor and Type I Interferon Responses by ITAM-Coupled Receptors and Integrins. Immunity, 2010, 32, 518-530.	14.3	127
42	IFN-α Priming Results in a Gain of Proinflammatory Function by IL-10: Implications for Systemic Lupus Erythematosus Pathogenesis. Journal of Immunology, 2004, 172, 6476-6481.	0.8	124
43	Rheumatoid Arthritis Synoviocyte Survival Is Dependent on Stat3. Journal of Immunology, 2002, 169, 6610-6616.	0.8	123
44	Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Research and Therapy, 2011, 13, 234.	3.5	123
45	Inhibition of IL-6 and IL-10 Signaling and Stat Activation by Inflammatory and Stress Pathways. Journal of Immunology, 2000, 165, 5227-5237.	0.8	122
46	Signaling by STATs. Arthritis Research, 2004, 6, 159.	2.0	121
47	TNF activates calcium–nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1573-1578.	7.1	120
48	Tumor Necrosis Factor α Induces Sustained Signaling and a Prolonged and Unremitting Inflammatory Response in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis and Rheumatism, 2013, 65, 928-938.	6.7	119
49	IL-27 Activates Human Monocytes via STAT1 and Suppresses IL-10 Production but the Inflammatory Functions of IL-27 Are Abrogated by TLRs and p38. Journal of Immunology, 2008, 180, 6325-6333.	0.8	114
50	Circulating human B cells that express surrogate light chains and edited receptors. Nature Immunology, 2000, 1, 207-213.	14.5	109
51	Regulation of age-associated B cells by IRF5 in systemic autoimmunity. Nature Immunology, 2018, 19, 407-419.	14.5	105
52	IL-10 Suppresses Calcium-Mediated Costimulation of Receptor Activator NF-κB Signaling during Human Osteoclast Differentiation by Inhibiting TREM-2 Expression. Journal of Immunology, 2009, 183, 2444-2455.	0.8	103
53	Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nature Communications, 2014, 5, 5418.	12.8	103
54	Regulation of inflammatory responses in tumor necrosis factor–activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. Arthritis and Rheumatism, 2012, 64, 3856-3866.	6.7	102

#	Article	IF	CITATIONS
55	IFN-Î ³ Induces Histone 3 Lysine 27 Trimethylation in a Small Subset of Promoters to Stably Silence Gene Expression in Human Macrophages. Cell Reports, 2016, 16, 3121-3129.	6.4	99
56	Modulation of TNF-Induced Macrophage Polarization by Synovial Fibroblasts. Journal of Immunology, 2014, 193, 2373-2383.	0.8	94
57	Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Research and Therapy, 2018, 20, 139.	3.5	93
58	The Cytokine TNF Promotes Transcription Factor SREBP Activity and Binding to Inflammatory Genes to Activate Macrophages and Limit Tissue Repair. Immunity, 2019, 51, 241-257.e9.	14.3	91
59	Overview of the biology of type I interferons. Arthritis Research and Therapy, 2010, 12, S1.	3.5	90
60	Amplification of IFN-α-induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors. Nature Immunology, 2004, 5, 1181-1189.	14.5	88
61	Expression and function of semaphorin 3A and its receptors in human monocyte-derived macrophages. Human Immunology, 2009, 70, 211-217.	2.4	87
62	The JAK/STAT pathway in rheumatoid arthritis: Pathogenic or protective?. Arthritis and Rheumatism, 2003, 48, 2092-2096.	6.7	85
63	Interleukin-10-induced gene expression and suppressive function are selectively modulated by the PI3K-Akt-GSK3 pathway. Immunology, 2011, 132, 567-577.	4.4	83
64	'Tuning' of type I interferon–induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nature Immunology, 2008, 9, 186-193.	14.5	74
65	Cytokine Expression and Cell Activation in Inflammatory Arthritis. Advances in Immunology, 1996, 63, 337-376.	2.2	73
66	A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways. Nature Reviews Immunology, 2008, 8, 816-822.	22.7	73
67	Lipopolysaccharide-Induced Expression of Matrix Metalloproteinases in Human Monocytes Is Suppressed by IFN-γ via Superinduction of ATF-3 and Suppression of AP-1. Journal of Immunology, 2008, 181, 5089-5097.	0.8	73
68	Inhibition of Interleukin 10 Signaling after Fc Receptor Ligation and during Rheumatoid Arthritis. Journal of Experimental Medicine, 2003, 197, 1573-1583.	8.5	72
69	Suppression of TNF-α and IL-1 Signaling Identifies a Mechanism of Homeostatic Regulation of Macrophages by IL-27. Journal of Immunology, 2010, 185, 7047-7056.	0.8	71
70	Hypoxia-Sensitive COMMD1 Integrates Signaling and Cellular Metabolism in Human Macrophages and Suppresses Osteoclastogenesis. Immunity, 2017, 47, 66-79.e5.	14.3	71
71	IFN-Î ³ selectively suppresses a subset of TLR4-activated genes and enhancers to potentiate macrophage activation. Nature Communications, 2019, 10, 3320.	12.8	71
72	Inhibition of Interleukin 2 Signaling and Signal Transducer and Activator of Transcription (Stat)5 Activation during T Cell Receptor–Mediated Feedback Inhibition of T Cell Expansion. Journal of Experimental Medicine, 1999, 190, 1263-1274.	8.5	67

#	Article	IF	CITATIONS
73	Wear Debris Inhibition of Anti-Osteoclastogenic Signaling by Interleukin-6 and Interferon-Â: Mechanistic Insights and Implications for Periprosthetic Osteolysis. Journal of Bone and Joint Surgery - Series A, 2006, 88, 788-799.	3.0	67
74	Suppression of the Effector Phase of Inflammatory Arthritis by Double-Stranded RNA Is Mediated by Type I IFNs. Journal of Immunology, 2007, 178, 2204-2211.	0.8	67
75	BET bromodomain inhibition suppresses transcriptional responses to cytokineâ€Jakâ€&TAT signaling in a geneâ€specific manner in human monocytes. European Journal of Immunology, 2015, 45, 287-297.	2.9	67
76	Type I Interferon: A New Player in TNF Signaling. Current Directions in Autoimmunity, 2010, 11, 94-104.	8.0	66
77	Cutting Edge: EZH2 Promotes Osteoclastogenesis by Epigenetic Silencing of the Negative Regulator IRF8. Journal of Immunology, 2016, 196, 4452-4456.	0.8	66
78	TNF-induced inflammatory genes escape repression in fibroblast-like synoviocytes: transcriptomic and epigenomic analysis. Annals of the Rheumatic Diseases, 2019, 78, 1205-1214.	0.9	66
79	Dysregulation of interleukinâ€10–dependent gene expression in rheumatoid arthritis synovial macrophages. Arthritis and Rheumatism, 2006, 54, 2711-2721.	6.7	64
80	Interleukinâ€27 inhibits human osteoclastogenesis by abrogating RANKLâ€mediated induction of nuclear factor of activated T cells c1 and suppressing proximal RANK signaling. Arthritis and Rheumatism, 2010, 62, 402-413.	6.7	64
81	RBP-J–Regulated miR-182 Promotes TNF-α–Induced Osteoclastogenesis. Journal of Immunology, 2016, 196, 4977-4986.	0.8	59
82	IFN-Î ³ -Primed Macrophages Exhibit Increased CCR2-Dependent Migration and Altered IFN-Î ³ Responses Mediated by Stat1. Journal of Immunology, 2005, 175, 3637-3647.	0.8	57
83	Regulation of macrophage phenotype by long-term exposure to IL-10. Immunobiology, 2005, 210, 77-86.	1.9	57
84	The interferon signature and <i>STAT1</i> expression in rheumatoid arthritis synovial fluid macrophages are induced by tumor necrosis factor α and counterâ€regulated by the synovial fluid microenvironment. Arthritis and Rheumatism, 2012, 64, 3119-3128.	6.7	57
85	Costimulation of Chemokine Receptor Signaling by Matrix Metalloproteinase-9 Mediates Enhanced Migration of IFN-α Dendritic Cells. Journal of Immunology, 2006, 176, 6022-6033.	0.8	55
86	Homeostatic Role of Interferons Conferred by Inhibition of IL-1-Mediated Inflammation and Tissue Destruction. Journal of Immunology, 2005, 175, 131-138.	0.8	53
87	Type I Interferon Modulation of Cellular Responses to Cytokines and Infectious Pathogens: Potential Role in SLE Pathogenesis. Autoimmunity, 2003, 36, 473-479.	2.6	52
88	Negative regulation of osteoclast precursor differentiation by CD11b and $\langle b \rangle^2 \langle /b \rangle^2$ integrin-B-cell lymphoma 6 signaling. Journal of Bone and Mineral Research, 2013, 28, 135-149.	2.8	52
89	RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. Journal of Clinical Investigation, 2014, 124, 5057-5073.	8.2	52
90	Inhibition of IFN-Â signaling by a PKC- and protein tyrosine phosphatase SHP-2-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10267-10272.	7.1	50

#	Article	IF	CITATIONS
91	Apoptotic Cells Inhibit LPS-Induced Cytokine and Chemokine Production and IFN Responses in Macrophages. Human Immunology, 2007, 68, 156-164.	2.4	46
92	Selective Regulation of IL-10 Signaling and Function by Zymosan. Journal of Immunology, 2006, 176, 4785-4792.	0.8	42
93	Direct Inhibition of Human RANK+ Osteoclast Precursors Identifies a Homeostatic Function of IL-1β. Journal of Immunology, 2010, 185, 5926-5934.	0.8	42
94	RBP-J is required for M2 macrophage polarization in response to chitin and mediates expression of a subset of M2 genes. Protein and Cell, 2016, 7, 201-209.	11.0	42
95	Kinase inhibitors: A new tool for the treatment of rheumatoid arthritis. Clinical Immunology, 2013, 148, 66-78.	3.2	29
96	Regulation of STAT pathways and IRF1 during human dendritic cell maturation by TNF-α and PGE2. Journal of Leukocyte Biology, 2008, 84, 1353-1360.	3.3	28
97	Insights into rheumatic diseases from next-generation sequencing. Nature Reviews Rheumatology, 2019, 15, 327-339.	8.0	28
98	MEF2C regulates osteoclastogenesis and pathologic bone resorption via c-FOS. Bone Research, 2021, 9, 4.	11.4	28
99	Feedback inhibition of osteoclastogenesis during inflammation by ILâ€10, Mâ€CSF receptor shedding, and induction of IRF8. Annals of the New York Academy of Sciences, 2011, 1237, 88-94.	3.8	27
100	Dissection and function of autoimmunity-associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nature Communications, 2018, 9, 658.	12.8	27
101	How ITAMs Inhibit Signaling. Science Signaling, 2011, 4, pe20.	3.6	26
102	Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages. Scientific Reports, 2016, 6, 31959.	3.3	26
103	Kinetics of IL-10-induced gene expression in human macrophages. Immunobiology, 2005, 210, 87-95.	1.9	25
104	ITAM-Coupled Receptors Inhibit IFNAR Signaling and Alter Macrophage Responses to TLR4 and <i>Listeria mono cytogenes</i> . Journal of Immunology, 2012, 188, 3447-3457.	0.8	24
105	Use of RNA sequencing to evaluate rheumatic disease patients. Arthritis Research and Therapy, 2015, 17, 167.	3.5	23
106	Inhibition of IL-6 signaling by a p38-dependent pathway occurs in the absence of new protein synthesis. Journal of Leukocyte Biology, 2002, 72, 154-62.	3.3	22
107	Tumor Necrosis Factor dynamically regulates the mRNA stabilome in rheumatoid arthritis fibroblast-like synoviocytes. PLoS ONE, 2017, 12, e0179762.	2.5	21
108	Epigenetic Regulation of Myeloid Cells. Microbiology Spectrum, 2016, 4, .	3.0	20

#	Article	IF	CITATIONS
109	Role of <scp>Lysineâ€Specific</scp> Demethylase 1 in Metabolically Integrating Osteoclast Differentiation and Inflammatory Bone Resorption Through <scp>Hypoxiaâ€Inducible</scp> Factor 1α and <scp>E2F1</scp> . Arthritis and Rheumatology, 2022, 74, 948-960.	5.6	20
110	PTPN22 in Autoimmunity: Different Cell and Different Way. Immunity, 2013, 39, 91-93.	14.3	19
111	Sequencing of Circulating Microbial Cell-Free DNA Can Identify Pathogens in Periprosthetic Joint Infections. Journal of Bone and Joint Surgery - Series A, 2021, 103, 1705-1712.	3.0	17
112	Implication of the Association of Fibrinogen Citrullination and Osteoclastogenesis in Bone Destruction in Rheumatoid Arthritis. Cells, 2020, 9, 2720.	4.1	15
113	Can SOCS make arthritis better?. Journal of Clinical Investigation, 2003, 111, 795-797.	8.2	15
114	CXCL4 synergizes with TLR8 for TBK1-IRF5 activation, epigenomic remodeling and inflammatory response in human monocytes. Nature Communications, 2022, 13, .	12.8	15
115	Metabolic-epigenetic coupling in osteoclast differentiation. Nature Medicine, 2015, 21, 212-213.	30.7	13
116	Intravenous Immunoglobulin (IVIG) Attenuates TNFâ€Induced Pathologic Bone Resorption and Suppresses Osteoclastogenesis by Inducing A20 Expression. Journal of Cellular Physiology, 2016, 231, 449-458.	4.1	12
117	In vitro responses to platelet-rich-plasma are associated with variable clinical outcomes in patients with knee osteoarthritis. Scientific Reports, 2021, 11, 11493.	3.3	12
118	Def6 Restrains Osteoclastogenesis and Inflammatory Bone Resorption. Journal of Immunology, 2017, 198, 3436-3447.	0.8	11
119	Immune Response to Persistent Staphyloccocus Aureus Periprosthetic Joint Infection in a Mouse Tibial Implant Model. Journal of Bone and Mineral Research, 2020, 37, 577-594.	2.8	11
120	The Relative Timing of Exposure to Phagocytosable Particulates and to Osteoclastogenic Cytokines Is Critically Important in the Determination of Myeloid Cell Fate. Journal of Immunology, 2010, 185, 1265-1273.	0.8	9
121	Distinct Inflammatory Macrophage Populations Sequentially Infiltrate Boneâ€toâ€Tendon Interface Tissue After Anterior Cruciate Ligament (<scp>ACL)</scp> Reconstruction Surgery in Mice. JBMR Plus, 2022, 6,	2.7	9
122	Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges. Arthritis Research and Therapy, 2022, 24, 68.	3.5	8
123	Immune and repair responses in joint tissues and lymph nodes after knee arthroplasty surgery in mice. Journal of Bone and Mineral Research, 2020, 36, 1765-1780.	2.8	7
124	Inhibition of PAD4 mediated neutrophil extracellular traps prevents fibrotic osseointegration failure in a tibial implant murine model. Bone and Joint Journal, 2021, 103-B, 135-144.	4.4	7
125	STAT Activation during Viral Infection In Vivo: Where's the Interferon?. Cell Host and Microbe, 2010, 8, 132-135.	11.0	6
126	<pre><scp>RNA</scp>â€<scp>seq</scp>Analysis of<scp>Periâ€Implant</scp>Tissue Shows Differences in Immune, Notch, Wnt, and Angiogenesis Pathways in Aged Versus Young Mice. JBMR Plus, 2021, 5, e10535.</pre>	2.7	6

#	Article	IF	CITATIONS
127	â€~-Omics' shed light on B cells in lupus. Nature Immunology, 2019, 20, 946-948.	14.5	5
128	Tmem100- and Acta2-Lineage Cells Contribute to Implant Osseointegration in a Mouse Model. Journal of Bone and Mineral Research, 2020, 36, 1000-1011.	2.8	5
129	Crosstalk with the Jak-STAT Pathway in Inflammation. , 2012, , 353-370.		4
130	Synovial fibroblasts display an uncontrolled inflammatory and tissue destructive response to TNF-α. Arthritis Research and Therapy, 2012, 14, .	3.5	1
131	WEAR DEBRIS INHIBITION OF ANTI-OSTEOCLASTOGENIC SIGNALING BY INTERLEUKIN-6 AND INTERFERON-Î ³ . Journal of Bone and Joint Surgery - Series A, 2006, 88, 788-799.	3.0	1
132	Epigenetic Regulation of Myeloid Cells. , 0, , 571-590.		1
133	04.10â€Chronic inflammation regulates the mrna stabilome in rheumatoid arthritis fibroblast-like synoviocytes. , 2017, , .		0
134	Intermittent parathyroid hormone increases stability and improves osseointegration of initially unstable implants. Bone and Joint Research, 2022, 11, 260-269.	3.6	0