Richard P Harvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7157725/publications.pdf

Version: 2024-02-01

217 papers

22,084 citations

74 h-index

9264

9589 142 g-index

234 all docs

234 docs citations

234 times ranked 21662 citing authors

#	Article	IF	CITATIONS
1	Whole genome sequencing in transposition of the great arteries and associations with clinically relevant heart, brain and laterality genes. American Heart Journal, 2022, 244, 1-13.	2.7	10
2	Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell, 2022, 29, 281-297.e12.	11.1	71
3	Quantitative 3D analysis and visualization of cardiac fibrosis by microcomputed tomography. STAR Protocols, 2022, 3, 101055.	1.2	2
4	Cardiac fibroblast heterogeneity and dynamics through the lens of single-cell dual †omics. Cardiovascular Research, 2022, 118, 1380-1382.	3.8	3
5	Plateletâ€Derived Growth Factor Receptor Type α Activation Drives Pulmonary Vascular Remodeling Via Progenitor Cell Proliferation and Induces Pulmonary Hypertension. Journal of the American Heart Association, 2022, 11, e023021.	3.7	5
6	Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nature Communications, 2021, 12, 681.	12.8	158
7	Conserved Role of the Large Conductance Calcium-Activated Potassium Channel, K _{Ca} 1.1, in Sinus Node Function and Arrhythmia Risk. Circulation Genomic and Precision Medicine, 2021, 14, e003144.	3.6	14
8	Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nature Biomedical Engineering, 2021, 5, 880-896.	22.5	18
9	Perinatal angiogenesis from pre-existing coronary vessels via DLL4–NOTCH1 signalling. Nature Cell Biology, 2021, 23, 967-977.	10.3	21
10	FACS Enrichment of Total Interstitial Cells and Fibroblasts from Adult Mouse Ventricles. Bio-protocol, 2021, 11, e4028.	0.4	1
11	Platelet-derived growth factor-AB improves scar mechanics and vascularity after myocardial infarction. Science Translational Medicine, 2020, 12, .	12.4	37
12	Sierra: discovery of differential transcript usage from polyA-captured single-cell RNA-seq data. Genome Biology, 2020, 21, 167.	8.8	59
13	Tissue-Resident PDGFRα+ Progenitor Cells Contribute to Fibrosis versus Healing in a Context- and Spatiotemporally Dependent Manner. Cell Reports, 2020, 30, 555-570.e7.	6.4	43
14	Basic Biology of Extracellular Matrix in the Cardiovascular System, Part 1/4. Journal of the American College of Cardiology, 2020, 75, 2169-2188.	2.8	51
15	Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk. Development (Cambridge), 2019, 146, .	2.5	123
16	Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. ELife, 2019, 8, .	6.0	379
17	Gene-environment interaction impacts on heart development and embryo survival. Development (Cambridge), 2019, 146, .	2.5	43
18	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	2.8	147

#	Article	IF	CITATIONS
19	Endothelial to Mesenchymal Transition inÂCardiovascular Disease. Journal of the American College of Cardiology, 2019, 73, 190-209.	2.8	357
20	Identification of clinically actionable variants from genome sequencing of families with congenital heart disease. Genetics in Medicine, 2019, 21, 1111-1120.	2.4	54
21	Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight, 2019, 4, .	5.0	101
22	Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development (Cambridge), 2018, 145, .	2.5	10
23	Comparative regenerative mechanisms across different mammalian tissues. Npj Regenerative Medicine, 2018, 3, 6.	5.2	157
24	Analysis of cardiac stem cell self-renewal dynamics in serum-free medium by single cell lineage tracking. Stem Cell Research, 2018, 28, 115-124.	0.7	6
25	NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nature Communications, 2018, 9, 1373.	12.8	77
26	Genetic burden and associations with adverse neurodevelopment in neonates with congenital heart disease. American Heart Journal, 2018, 201, 33-39.	2.7	19
27	Finding the Petroclival Carotid Artery: The Vidian–Eustachian Junction as a Reliable Landmark. Journal of Neurological Surgery, Part B: Skull Base, 2018, 79, 361-366.	0.8	9
28	Deletion of Nkx2-5 in trabecular myocardium reveals the developmental origins of pathological heterogeneity associated with ventricular non-compaction cardiomyopathy. PLoS Genetics, 2018, 14, e1007502.	3.5	37
29	Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature, 2018, 557, 439-445.	27.8	144
30	Intravital Imaging to Monitor Therapeutic Response in Moving Hypoxic Regions Resistant to PI3K Pathway Targeting in Pancreatic Cancer. Cell Reports, 2018, 23, 3312-3326.	6.4	61
31	Analysis of steric effects in DamID profiling of transcription factor target genes. Genomics, 2017, 109, 75-82.	2.9	8
32	Advances in the Genetics of Congenital HeartÂDisease. Journal of the American College of Cardiology, 2017, 69, 859-870.	2.8	115
33	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	12.4	208
34	Altered cytokine profile, pain sensitivity, and stress responsivity in mice with co-disruption of the developmental genes Neuregulin- $1\tilde{A}$ —DISC1. Behavioural Brain Research, 2017, 320, 113-118.	2.2	5
35	Loss of Rearranged L-Myc Fusion (RLF) results in defects in heart development in the mouse. Differentiation, 2017, 94, 8-20.	1.9	10
36	The promises and challenges of exome sequencing in familial, non-syndromic congenital heart disease. International Journal of Cardiology, 2017, 230, 155-163.	1.7	10

#	Article	IF	Citations
37	A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. Cell Reports, 2017, 21, 274-288.	6.4	83
38	Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nature Communications, 2017, 8, 578.	12.8	32
39	Epistatic and Independent Effects on Schizophrenia-Related Phenotypes Following Co-disruption of the Risk Factors Neuregulin-1 × DISC1. Schizophrenia Bulletin, 2017, 43, 214-225.	4.3	15
40	Nkx2.5 marks angioblasts that contribute to hemogenic endothelium of the endocardium and dorsal aorta. ELife, 2017, 6, .	6.0	27
41	Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly. ELife, 2017, 6, .	6.0	38
42	Specialized Information Processing Deficits and Distinct Metabolomic Profiles Following TM-Domain Disruption of Nrg1. Schizophrenia Bulletin, 2017, 43, 1100-1113.	4.3	2
43	Point mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling. JCI Insight, 2017, 2, e88271.	5.0	24
44	Pathophysiological Trends During Withdrawal of Life Support. Transplantation, 2016, 100, 2621-2629.	1.0	45
45	Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development (Cambridge), 2016, 143, 1242-1258.	2.5	65
46	Prediction and validation of protein–protein interactors from genome-wide DNA-binding data using a knowledge-based machine-learning approach. Open Biology, 2016, 6, 160183.	3.6	10
47	A rapid co-culture stamping device for studying intercellular communication. Scientific Reports, 2016, 6, 35618.	3.3	12
48	Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol. Journal of Visualized Experiments, 2016,	0.3	13
49	A novel conditional mouse model for Nkx2-5 reveals transcriptional regulation of cardiac ion channels. Differentiation, 2016, 91, 29-41.	1.9	25
50	Cardiac Regeneration Therapies – Targeting Neuregulin 1 Signalling. Heart Lung and Circulation, 2016, 25, 4-7.	0.4	8
51	Antisenseâ€mediated exon skipping: a therapeutic strategy for titinâ€based dilated cardiomyopathy. EMBO Molecular Medicine, 2015, 7, 562-576.	6.9	94
52	CompGO: an R package for comparing and visualizing Gene Ontology enrichment differences between DNA binding experiments. BMC Bioinformatics, 2015, 16, 275.	2.6	44
53	Cardiac Repair With a Novel Population of Mesenchymal Stem Cells Resident in the Human Heart. Stem Cells, 2015, 33, 3100-3113.	3.2	53
54	Bioengineering and Stem Cell Technology in the Treatment of Congenital Heart Disease. Journal of Clinical Medicine, 2015, 4, 768-781.	2.4	3

#	Article	IF	CITATIONS
55	Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model. BioMed Research International, 2015, 2015, 1-6.	1.9	16
56	Irreversible Triggers for HypertrophicÂCardiomyopathy Are Established in the Early Postnatal Period. Journal of the American College of Cardiology, 2015, 65, 560-569.	2.8	22
57	A common <i>Shox2</i> - <i>Nkx2-5</i> antagonistic mechanism primes the pacemaking cell fate in the pulmonary vein myocardium and sinoatrial node. Development (Cambridge), 2015, 142, 2521-32.	2.5	105
58	Normothermic Ex Vivo Perfusion Provides Superior Organ Preservation and Enables Viability Assessment of Hearts From DCD Donors. American Journal of Transplantation, 2015, 15, 371-380.	4.7	108
59	ERBB2 triggers mammalian heart regeneration byÂpromoting cardiomyocyte dedifferentiation andÂproliferation. Nature Cell Biology, 2015, 17, 627-638.	10.3	541
60	Cardiomyocytes Replicate and their Numbers Increase in Young Hearts. Cell, 2015, 163, 783-784.	28.9	14
61	A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Stem Cells Translational Medicine, 2015, 4, 1482-1494.	3.3	104
62	Bioengineered FSTL1 Patches Restore Cardiac Function Following Myocardial Infarction. Trends in Molecular Medicine, 2015, 21, 731-733.	6.7	13
63	NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. ELife, 2015, 4, .	6.0	54
64	Epicardial Origin of Resident Mesenchymal Stem Cells in the Adult Mammalian Heart. Journal of Developmental Biology, 2014, 2, 117-137.	1.7	15
65	Increasing the Tolerance of DCD Hearts to Warm Ischemia by Pharmacological Postconditioning. American Journal of Transplantation, 2014, 14, 1744-1752.	4.7	105
66	Targeted Next-Generation Sequencing Identifies Pathogenic Variants in Familial Congenital Heart Disease. Journal of the American College of Cardiology, 2014, 64, 2498-2506.	2.8	85
67	Gene–environment interaction demonstrates the vulnerability of the embryonic heart. Developmental Biology, 2014, 391, 99-110.	2.0	13
68	Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair. Circulation Research, 2014, 114, 1422-1434.	4.5	188
69	Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. Stem Cell Research, 2014, 13, 592-614.	0.7	39
70	Introduction to the Special Issue on Heart Regeneration and Rejuvenation. Stem Cell Research, 2014, 13, 521-522.	0.7	3
71	Genetic Networks Governing Heart Development. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013839-a013839.	6.2	46
72	Cardiac outflow tract development relies on the complex function of Sox4 and Sox11 in multiple cell types. Cellular and Molecular Life Sciences, 2014, 71, 2931-2945.	5.4	42

#	Article	IF	CITATIONS
73	Phenotypic effects of maternal immune activation and early postnatal milieu in mice mutant for the schizophrenia risk gene neuregulin-1. Neuroscience, 2014, 277, 294-305.	2.3	56
74	Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors. ELife, 2014, 3, e02164.	6.0	36
75	Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nature Cell Biology, 2013, 15, 1362-1369.	10.3	63
76	Nkx2-5 Mediates Differential Cardiac Differentiation Through Interaction with Hoxa10. Stem Cells and Development, 2013, 22, 2211-2220.	2.1	31
77	Nkx2-5+Islet1+ Mesenchymal Precursors Generate Distinct Spleen Stromal Cell Subsets and Participate in Restoring Stromal Network Integrity. Immunity, 2013, 38, 782-791.	14.3	82
78	Haemogenic endocardium contributes to transient definitive haematopoiesis. Nature Communications, 2013, 4, 1564.	12.8	119
79	Epithelial to mesenchymal transition as a portal to stem cell characters embedded in gene networks. BioEssays, 2013, 35, 191-200.	2.5	16
80	Functional Characterization of a Novel Mutation in <i>NKX2-5</i> Associated With Congenital Heart Disease and Adult-Onset Cardiomyopathy. Circulation: Cardiovascular Genetics, 2013, 6, 238-247.	5.1	77
81	Selective Inhibition of Human Group IIA-secreted Phospholipase A2 (hGIIA) Signaling Reveals Arachidonic Acid Metabolism Is Associated with Colocalization of hGIIA to Vimentin in Rheumatoid Synoviocytes. Journal of Biological Chemistry, 2013, 288, 15269-15279.	3.4	23
82	Rotary ATPases. Bioarchitecture, 2013, 3, 2-12.	1.5	42
83	Lack of Genetic Interaction between Tbx20 and Tbx3 in Early Mouse Heart Development. PLoS ONE, 2013, 8, e70149.	2.5	3
84	<i>Fibroblast growth factor $10 < i$ gene regulation in the second heart field by Tbx1, Nkx2-5, and Islet1 reveals a genetic switch for down-regulation in the myocardium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18273-18280.</i>	7.1	109
85	Biased DNA Segregation and Cardiac Stem Cell Therapies. Circulation Research, 2012, 111, 827-830.	4.5	5
86	Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovascular Research, 2012, 96, 276-285.	3.8	63
87	Long Noncoding RNAs in Cardiac Development and Pathophysiology. Circulation Research, 2012, 111, 1349-1362.	4.5	220
88	An Endothelial Contribution to Coronary Vessels. Cell, 2012, 151, 932-934.	28.9	15
89	Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: A putative model of gene \tilde{A} — environment interaction. Brain, Behavior, and Immunity, 2012, 26, 660-671.	4.1	76
90	Congenital Asplenia in Mice and Humans with Mutations in a Pbx/Nkx2-5/p15 Module. Developmental Cell, 2012, 22, 913-926.	7.0	70

#	Article	IF	CITATIONS
91	Congenital heart disease: current knowledge about causes and inheritance. Medical Journal of Australia, 2012, 197, 155-159.	1.7	209
92	Combined Mutation Screening of NKX2-5, GATA4, and TBX5 in Congenital Heart Disease: Multiple Heterozygosity and Novel Mutations. Congenital Heart Disease, 2012, 7, 151-159.	0.2	73
93	Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Research, 2012, 8, 58-73.	0.7	107
94	Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nature Communications, $2011, 2, 187$.	12.8	175
95	Revitalizing Our View of Heart Development. Developmental Cell, 2011, 21, e2.	7.0	0
96	Adult Cardiac-Resident MSC-like Stem Cells with a Proepicardial Origin. Cell Stem Cell, 2011, 9, 527-540.	11.1	358
97	Complex SUMO-1 Regulation of Cardiac Transcription Factor Nkx2-5. PLoS ONE, 2011, 6, e24812.	2.5	34
98	Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. Journal of Cell Biology, 2011, 192, 751-765.	5.2	114
99	Somatic mutations in <i>NKX2–5</i> , <i>GATA4</i> , and <i>HAND1</i> are not a common cause of tetralogy of Fallot or hypoplastic left heart. American Journal of Medical Genetics, Part A, 2011, 155, 2416-2421.	1.2	34
100	Characterization of <i>Pitx2c</i> expression in the mouse heart using a reporter transgene. Developmental Dynamics, 2011, 240, 195-203.	1.8	32
101	The Ontogeny of Cardiac Regeneration. Circulation Research, 2011, 108, 1304-1305.	4.5	3
102	Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal of Cell Biology, 2011, 193, 1181-1196.	5.2	74
103	Loss of Cited2 causes congenital heart disease by perturbing left–right patterning of the body axis. Human Molecular Genetics, 2011, 20, 1097-1110.	2.9	54
104	Nkx2-5 Represses <i>Gata1</i> Gene Expression and Modulates the Cellular Fate of Cardiac Progenitors During Embryogenesis. Circulation, 2011, 123, 1633-1641.	1.6	48
105	Investigation of Association between PFO Complicated by Cryptogenic Stroke and a Common Variant of the Cardiac Transcription Factor GATA4. PLoS ONE, 2011, 6, e20711.	2.5	4
106	Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. Journal of Experimental Medicine, 2011, 208, i5-i5.	8.5	0
107	Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal of Experimental Medicine, 2011, 208, i20-i20.	8.5	0
108	Disruption of thermal nociceptive behaviour in mice mutant for the schizophrenia-associated genes NRG1, COMT and DISC1. Brain Research, 2010, 1348, 114-119.	2.2	24

#	Article	IF	CITATIONS
109	Expression of <i>Slit</i> and <i>Robo</i> genes in the developing mouse heart. Developmental Dynamics, 2010, 239, 3303-3311.	1.8	38
110	Heart redevelopment. Nature, 2010, 467, 39-40.	27.8	4
111	Schizophreniaâ€related endophenotypes in heterozygous neuregulinâ€1 †knockout' mice. European Journa of Neuroscience, 2010, 31, 349-358.	2.6	68
112	Neuregulin 1 Sustains the Gene Regulatory Network in Both Trabecular and Nontrabecular Myocardium. Circulation Research, 2010, 107, 715-727.	4.5	81
113	Zac1 Is an Essential Transcription Factor for Cardiac Morphogenesis. Circulation Research, 2010, 106, 1083-1091.	4.5	46
114	<i>GATA4</i> Mutations in 357 Unrelated Patients with Congenital Heart Malformation. Genetic Testing and Molecular Biomarkers, 2010, 14, 797-802.	0.7	50
115	α-Cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Human Molecular Genetics, 2010, 19, 4007-4016.	2.9	131
116	A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. Journal of Medical Genetics, 2010, 47, 230-235.	3.2	108
117	NK-2 Class Homeodomain Proteins. , 2010, , 569-597.		10
118	Cardiac Deletion of Smyd2 Is Dispensable for Mouse Heart Development. PLoS ONE, 2010, 5, e9748.	2.5	63
119	Nkx2–5 transactivates the <i>Ets-related protein 71</i> gene and specifies an endothelial/endocardial fate in the developing embryo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 814-819.	7.1	195
120	Landmarks and Lineages in the Developing Heart. Circulation Research, 2009, 104, 1235-1237.	4.5	13
121	Molecular analysis of <i>PRKAG2</i> , <i>LAMP2</i> , and <i>NKX2â€5</i> genes in a cohort of 125 patients with accessory atrioventricular connection. American Journal of Medical Genetics, Part A, 2009, 149A, 1574-1577.	1.2	18
122	c-Kit Function Is Necessary for In Vitro Myogenic Differentiation of Bone Marrow Hematopoietic Cells. Stem Cells, 2009, 27, 1911-1920.	3.2	28
123	Phenotype of spontaneous orofacial dyskinesia in neuregulin-1  knockout' mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 330-333.	4.8	7
124	Conformational Stability and DNA Binding Specificity of the Cardiac T-Box Transcription Factor Tbx20. Journal of Molecular Biology, 2009, 389, 606-618.	4.2	22
125	RNA toxicity in myotonic muscular dystrophy induces NKX2-5 expression. Nature Genetics, 2008, 40, 61-68.	21.4	7 5
126	Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous †knockout†mof the schizophrenia risk gene neuregulin-1. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 462-466.	4.8	87

#	Article	IF	Citations
127	A Critical Time for Stem Cell Research in Australia. Cell Stem Cell, 2008, 2, 118-122.	11.1	5
128	Compensatory Growth of Healthy Cardiac Cells in the Presence of Diseased Cells Restores Tissue Homeostasis during Heart Development. Developmental Cell, 2008, 15, 521-533.	7.0	159
129	BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes and Development, 2008, 22, 3037-3049.	5.9	63
130	Molecular Pathway for the Localized Formation of the Sinoatrial Node. Circulation Research, 2007, 100, 354-362.	4.5	331
131	Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14759-14764.	7.1	541
132	Pitx2c and Nkx2-5 Are Required for the Formation and Identity of the Pulmonary Myocardium. Circulation Research, 2007, 101, 902-909.	4.5	370
133	Arrhythmia induced by spatiotemporal overexpression of calreticulin in the heart. Molecular Genetics and Metabolism, 2007, 91, 285-293.	1.1	26
134	Phenotypic characterization of spatial cognition and social behavior in mice with †knockout†of the schizophrenia risk gene neuregulin 1. Neuroscience, 2007, 147, 18-27.	2.3	213
135	An Nkx2-5/Bmp2/Smad1 Negative Feedback Loop Controls Heart Progenitor Specification and Proliferation. Cell, 2007, 128, 947-959.	28.9	470
136	Mutations in Cardiac T-Box Factor Gene TBX20 Are Associated with Diverse Cardiac Pathologies, Including Defects of Septation and Valvulogenesis and Cardiomyopathy. American Journal of Human Genetics, 2007, 81, 280-291.	6.2	317
137	Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes, Brain and Behavior, 2007, 6, 677-687.	2.2	157
138	Time to mend a broken heart. Stem Cell Research, 2007, 1, 4-6.	0.7	2
139	Formation of the Venous Pole of the Heart From an Nkx2–5 –Negative Precursor Population Requires Tbx18. Circulation Research, 2006, 98, 1555-1563.	4.5	263
140	Sexually dimorphic changes in the exploratory and habituation profiles of heterozygous neuregulin-1 knockout mice. NeuroReport, 2006, 17, 79-83.	1.2	74
141	The Hlx homeobox transcription factor is required early in enteric nervous system development. BMC Developmental Biology, 2006, 6, 33.	2.1	24
142	Generation of conditionalCited2 null alleles. Genesis, 2006, 44, 579-583.	1.6	23
143	Conditional (loxP-flanked) allele for the gene encoding the retinoic acid-synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2). Genesis, 2006, 44, 155-158.	1.6	14
144	Quantitative Trait Loci Modifying Cardiac Atrial Septal Morphology and Risk of Patent Foramen Ovale in the Mouse. Circulation Research, 2006, 98, 651-658.	4.5	26

#	Article	IF	Citations
145	Responsiveness of Naive CD4 T Cells to Polarizing Cytokine Determines the Ratio of Th1 and Th2 Cell Differentiation. Journal of Immunology, 2006, 176, 1553-1560.	0.8	36
146	A tyrosine-rich domain within homeodomain transcription factor Nkx2-5 is an essential element in the early cardiac transcriptional regulatory machinery. Development (Cambridge), 2006, 133, 1311-1322.	2.5	28
147	Update on the use of stem cells for cardiac disease. Internal Medicine Journal, 2005, 35, 348-356.	0.8	21
148	Progress and challenges in the genetics of congenital heart disease. Medical Journal of Australia, 2005, 182, 100-101.	1.7	5
149	Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development (Cambridge), 2005, 132, 2451-2462.	2.5	218
150	T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development (Cambridge), 2005, 132, 4897-4910.	2.5	142
151	Muscle costameric protein, Chisel/Smpx, associates with focal adhesion complexes and modulates cell spreading in vitro via a Rac1/p38 pathway. Experimental Cell Research, 2005, 307, 367-380.	2.6	21
152	Foxh1 Is Essential for Development of the Anterior Heart Field. Developmental Cell, 2004, 7, 331-345.	7.0	173
153	Cardiomyogenic Precursor Cells in the Mammalian Embryo: Induction, Heterogeneity, and Morphogenesis., 2004,, 305-315.		1
154	Cardiac homeobox gene NKX2-5mutations and congenital heart disease. Journal of the American College of Cardiology, 2003, 41, 2072-2076.	2.8	231
155	Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Developmental Biology, 2003, 262, 206-224.	2.0	260
156	Molecular pathways in myocardial development: a stem cell perspective. Cardiovascular Research, 2003, 58, 264-277.	3.8	78
157	Architectural Defects in the Spleens of Nkx2-3-Deficient Mice Are Intrinsic and Associated with Defects in Both B Cell Maturation and T Cell-Dependent Immune Responses. Journal of Immunology, 2003, 170, 4002-4010.	0.8	43
158	Essential Role for the Lymphostromal Plasma Membrane Ly-6 Superfamily Molecule Thymic Shared Antigen 1 in Development of the Embryonic Adrenal Gland. Molecular and Cellular Biology, 2002, 22, 946-952.	2.3	17
159	Developmental paradigms in heart disease: insights from tinman. Annals of Medicine, 2002, 34, 148-156.	3.8	39
160	Hop Is an Unusual Homeobox Gene that Modulates Cardiac Development. Cell, 2002, 110, 713-723.	28.9	256
161	Neuregulin 1 and Susceptibility to Schizophrenia. American Journal of Human Genetics, 2002, 71, 877-892.	6.2	1,550
162	Patterning the vertebrate heart. Nature Reviews Genetics, 2002, 3, 544-556.	16.3	396

#	Article	IF	Citations
163	Molecular Determinants of Cardiac Development and Congenital Disease., 2002,, 331-370.		8
164	Developmental paradigms in heart disease: insights from tinman. Annals of Medicine, 2002, 34, 148-156.	3.8	21
165	Homeodomain Factor Nkx2-5 in Heart Development and Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 107-114.	1.1	67
166	Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3'UTR-ires-Cre allele of the homeobox gene Nkx2-5. International Journal of Developmental Biology, 2002, 46, 431-9.	0.6	223
167	Developmental paradigms in heart disease: insights from tinman. Annals of Medicine, 2002, 34, 148-56.	3.8	13
168	The Combinatorial Activities of Nkx2.5 and dHAND Are Essential for Cardiac Ventricle Formation. Developmental Biology, 2001, 239, 190-203.	2.0	168
169	Heart Matters. Cell, 2001, 107, 276-277.	28.9	0
170	Two CCAAT boxes in a novel inverted repeat motif are required for Hlx homeobox gene expression. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1519, 96-105.	2.4	6
171	The Small Muscle-Specific Protein Csl Modifies Cell Shape and Promotes Myocyte Fusion in an Insulin-like Growth Factor 1–Dependent Manner. Journal of Cell Biology, 2001, 153, 985-998.	5.2	83
172	Differential Binding of an SRF/NK-2/MEF2 Transcription Factor Complex in Normal Versus Neoplastic Smooth Muscle Tissues. Journal of Biological Chemistry, 2001, 276, 34637-34650.	3.4	32
173	Targeted insertion of alacZ reporter gene into the mouseCer1 locus reveals complex and dynamic expression during embryogenesis. Genesis, 2000, 26, 259-264.	1.6	44
174	Conserved linkage of NK-2 homeobox gene pairs Nkx2-2/2-4 and Nkx2-1/2-9 in mammals. Mammalian Genome, 2000, 11, 466-468.	2.2	19
175	Structural and functional characterization of the mouse Hlx homeobox gene. Mammalian Genome, 2000, 11, 836-842.	2.2	9
176	Homeodomain Factor Nkx2-3 Controls Regional Expression of Leukocyte Homing Coreceptor MAdCAM-1 in Specialized Endothelial Cells of the Viscera. Developmental Biology, 2000, 224, 152-167.	2.0	62
177	Chamber Formation and Morphogenesis in the Developing Mammalian Heart. Developmental Biology, 2000, 223, 266-278.	2.0	447
178	Cardiac Septal and Valvular Dysmorphogenesis in Mice Heterozygous for Mutations in the Homeobox Gene <i>Nkx2-5</i> . Circulation Research, 2000, 87, 888-895.	4.5	325
179	Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature, 1999, 400, 576-581.	27.8	418
180	HumancerberusRelated GeneCER1Maps to Chromosome 9. Genomics, 1999, 55, 364-366.	2.9	8

#	Article	IF	Citations
181	Assignment of the Human Helix-Loop-Helix Transcription Factor Gene Musculin/Activated B-Cell Factor-1 (MSC) to Chromosome 8q21 and Its Mouse Homologue (Msc) to the Proximal Region of Chromosome 1. Genomics, 1999, 57, 318-319.	2.9	5
182	The Cardiac Expression of Striated Muscle LIM Protein 1 (SLIM1) is Restricted to the Outflow Tract of the Developing Heart. Journal of Molecular and Cellular Cardiology, 1999, 31, 837-843.	1.9	29
183	Seeking a regulatory roadmap for heart morphogenesis. Seminars in Cell and Developmental Biology, 1999, 10, 99-107.	5.0	33
184	Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes and Development, 1999, 13, 2538-2548.	5.9	217
185	Transcriptional Control and Pattern Formation in the Developing Vertebrate Heart. , 1999, , 111-129.		16
186	Single allele mutations at the heart of congenital disease. Journal of Clinical Investigation, 1999, 104, 1483-1484.	8.2	6
187	epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Developmental Dynamics, 1998, 213, 105-113.	1.8	105
188	Links in the Left/Right Axial Pathway. Cell, 1998, 94, 273-276.	28.9	122
189	Expression of NK-2 class homeobox gene Nkx2–6 in foregut endoderm and heart. Mechanisms of Development, 1998, 73, 125-127.	1.7	58
190	musculin: a murine basic helix-loop-helix transcription factor gene expressed in embryonic skeletal muscle. Mechanisms of Development, 1998, 76, 197-201.	1.7	41
191	DAN is a secreted glycoprotein related to Xenopus cerberus. Mechanisms of Development, 1998, 77, 173-184.	1.7	84
192	Cardiac looping â€" an uneasy deal with laterality. Seminars in Cell and Developmental Biology, 1998, 9, 101-108.	5.0	42
193	Murine Cerberus Homologue mCer-1: A Candidate Anterior Patterning Molecule. Developmental Biology, 1998, 194, 135-151.	2.0	171
194	Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes and Development, 1997, 11, 1357-1369.	5.9	291
195	NK-2Homeobox Genes and Heart Development. Developmental Biology, 1996, 178, 203-216.	2.0	544
196	The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5742-5746.	7.1	199
197	Expression of cardiac muscle markers in rat myocyte cell lines. Molecular and Cellular Biochemistry, 1996, 157, 87-91.	3.1	1
198	Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut Genes and Development, 1996, 10, 70-79.	5.9	161

#	Article	IF	Citations
199	Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7075-7079.	7.1	528
200	Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5 Genes and Development, 1995, 9, 1654-1666.	5. 9	1,018
201	High-resolution genetic analysis of a deletion on mouse Chromosome 17 extending over the Fused, tufted, and homeobox Nkx2-5 loci. Mammalian Genome, 1994, 5, 814-816.	2.2	13
202	XNkx-2.5, a Xenopus Gene Related to Nkx-2.5 and tinman: Evidence for a Conserved Role in Cardiac Development. Developmental Biology, 1994, 162, 325-328.	2.0	205
203	The Murine Homeobox Genes Nkx2.3 and Nkx2.6 Are Located on Chromosomes 19 and 14, Respectively. Genomics, 1994, 22, 655-656.	2.9	11
204	MyoD protein expression in Xenopus embryos closely follows a mesoderm induction-dependent amplification of MyoD transcription and is synchronous across the future somite axis. Mechanisms of Development, 1992, 37, 141-149.	1.7	25
205	Novel murine homeo box gene on chromosome 1 expressed in specific hematopoietic lineages and during embryogenesis Genes and Development, 1991, 5, 509-520.	5.9	104
206	Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2199-2203.	7.1	234
207	Widespread expression of MyoD genes in Xenopus embryos is amplified in presumptive muscle as a delayed response to mesoderm induction Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9198-9202.	7.1	37
208	Transcription from the intron-containing chicken histone H2A.Fgene is not S-phase regulated. Nucleic Acids Research, 1989, 17, 1745-1756.	14.5	30
209	Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos. Cell, 1988, 53, 687-697.	28.9	115
210	Identification and cloning of localized maternal RNAs from xenopus eggs. Cell, 1985, 42, 769-777.	28.9	475
211	Localized Maternal mRNAs in Xenopus laevis Eggs. Cold Spring Harbor Symposia on Quantitative Biology, 1985, 50, 21-30.	1.1	23
212	H2A.F: an extremely variant histone H2A sequence expressed in the chicken embryo Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 2819-2823.	7.1	77
213	Independently evolving chicken histone H2B genes: identification of a ubiquitous H2B-specific 5′ element. Nucleic Acids Research, 1982, 10, 7851-7863.	14.5	141
214	Non-tandem arrangement and divergent transcription of chicken histone genes. Nature, 1981, 294, 49-53.	27.8	35
215	Vertebrate histone genes: nucleotide sequence of a chicken H2A gene and regulatory flanking sequences. Nucleic Acids Research, 1981, 9, 3119-3128.	14.5	35
216	Isolation of a genomal clone containing chicken histone genes. Nucleic Acids Research, 1979, 7, 1787-1798.	14.5	16

#	Article	IF	CITATIONS
217	Histone genes are clustered with a 15-kilobase repeat in the chicken genome. Nature, 1979, 279, 132-136.	27.8	29