Maasoumeh Jafarpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7155555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic Epoxidation Activity of Keplerate Polyoxomolybdate Nanoball toward Aqueous Suspension of Olefins under Mild Aerobic Conditions. Journal of the American Chemical Society, 2013, 135, 10036-10039.	13.7	115
2	ZrOCl2·8H2O/silica gel as a new efficient and a highly water–tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions. Journal of Molecular Catalysis A, 2006, 253, 249-251.	4.8	107
3	{Mo ₁₃₂ } Nanoball as an Efficient and Cost-Effective Catalyst for Sustainable Oxidation of Sulfides and Olefins with Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2014, 2, 942-950.	6.7	64
4	ZrCl4 dispersed on dry silica gel provides a useful reagent for S-alkylation of thiols with alcohols under solvent-free conditions. Tetrahedron Letters, 2006, 47, 93-97.	1.4	63
5	ZrOCl2·8H2O as a highly efficient and the moisture tolerant Lewis acid catalyst for Michael addition of amines and indoles to α, β-unsaturated ketones under solvent-free conditions. Journal of Molecular Catalysis A, 2006, 252, 150-155.	4.8	60
6	Aqueous heterogeneous oxygenation of hydrocarbons and sulfides catalyzed by recoverable magnetite nanoparticles coated with copper(ii) phthalocyanine. Green Chemistry, 2012, 14, 3386.	9.0	55
7	The catalytic efficiency of Fe-porphyrins supported on multi-walled carbon nanotubes in the heterogeneous oxidation of hydrocarbons and sulfides in water. Catalysis Science and Technology, 2014, 4, 1960.	4.1	54
8	Starch-coated maghemite nanoparticles functionalized by a novel cobalt Schiff base complex catalyzes selective aerobic benzylic C–H oxidation. RSC Advances, 2015, 5, 38460-38469.	3.6	54
9	Some applications of zirconium(IV) tetrachloride (ZrCl4) and zirconium(IV) oxydichloride octahydrate (ZrOCl2.8H2O) as catalysts or reagents in organic synthesis. Journal of the Iranian Chemical Society, 2008, 5, 159-183.	2.2	48
10	A simple, efficient, and highly selective method for the iodination of alcohols using ZrCl4/NaI. Tetrahedron Letters, 2004, 45, 7451-7454.	1.4	47
11	Rapid, highly efficient and stereoselective deoxygenation of epoxides by ZrCl4/NaI. Tetrahedron Letters, 2005, 46, 4107-4110.	1.4	45
12	Reusable α-MoO3 nanobelts catalyzes the green and heterogeneous condensation of 1,2-diamines with carbonyl compounds. New Journal of Chemistry, 2013, 37, 2087.	2.8	44
13	A novel protocol for selective synthesis of monoclinic zirconia nanoparticles as a heterogeneous catalyst for condensation of 1,2-diamines with 1,2-dicarbonyl compounds. New Journal of Chemistry, 2014, 38, 676-682.	2.8	43
14	Efficient and highly selective aqueous oxidation of alcohols and sulfides catalyzed by reusable hydrophobic copper (II) phthalocyanine. Inorganic Chemistry Communication, 2012, 15, 230-234.	3.9	40
15	Easy access to quinoxaline derivatives using alumina as an effective and reusable catalyst under solvent-free conditions. Applied Catalysis A: General, 2011, 394, 48-51.	4.3	37
16	Nanomagnet‣upported Partially Brominated Manganese–Porphyrin as a Promising Catalyst for the Selective Heterogeneous Oxidation of Hydrocarbons and Sulfides in Water. European Journal of Inorganic Chemistry, 2012, 2012, 5515-5524.	2.0	37
17	Silica-coated magnetite nanoparticles stabilized simple Mn-tetraphenylporphyrin for aqueous phase catalytic oxidations with tert-butyl hydroperoxide. RSC Advances, 2014, 4, 9189.	3.6	37
18	Pronounced Catalytic Activity of Manganese(III)– <i>Schiff</i> Base Complexes in the Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate. Helvetica Chimica Acta, 2010, 93, 711-717.	1.6	33

#	Article	IF	CITATIONS
19	Dioxomolybdenum(<scp>vi</scp>) complex immobilized on ascorbic acid coated TiO ₂ nanoparticles catalyzed heterogeneous oxidation of olefins and sulfides. Green Chemistry, 2015, 17, 442-452.	9.0	33
20	Silica gel catalyzed highly selective CS bond formation via Michael addition of thiols to α,β-unsaturated ketones under solvent-free conditions. Journal of Molecular Catalysis A, 2006, 249, 98-102.	4.8	32
21	A practical innovative method for highly selective oxidation of alcohols in neat water using water-insoluble iron and manganese porphyrins as reusable heterogeneous catalysts. Catalysis Communications, 2011, 16, 240-244.	3.3	32
22	Cytochrome P-450 model reactions: Efficient and highly selective oxidation of alcohols with tetrabutylammonium peroxymonosulfate catalyzed by Mn-porphyrins. Bioorganic and Medicinal Chemistry, 2007, 15, 3097-3101.	3.0	31
23	Catalytic activity of silica gel in the synthesis of sulfonamides under mild and solvent-free conditions. Applied Catalysis A: General, 2009, 358, 49-53.	4.3	30
24	Factors affecting the reactivity and selectivity in the oxidation of sulfides with tetra-n-butylammonium peroxomonosulfate catalyzed by Mn(III) porphyrins: Significant nitrogen donor effects. Polyhedron, 2011, 30, 592-598.	2.2	30
25	A Tandem Aerobic Photocatalytic Synthesis of Benzimidazoles by Cobalt Ascorbic Acid Complex Coated on TiO2 Nanoparticles Under Visible Light. Catalysis Letters, 2018, 148, 30-40.	2.6	30
26	Selective aerobic benzylic C–H oxidation co-catalyzed by N-hydroxyphthalimide and Keplerate {Mo72V30} nanocluster. RSC Advances, 2017, 7, 15754-15761.	3.6	28
27	A rapid and easy method for the synthesis of azoxy arenes using tetrabutylammonium peroxymonosulfate. Dyes and Pigments, 2008, 76, 840-843.	3.7	27
28	Synthesis, characterization and catalytic activity of oleic acid-coated TiO2 nanoparticles carrying MoO2 (acac)2 in the oxidation of olefins and sulfides using economical peroxides. New Journal of Chemistry, 2014, 38, 2917.	2.8	27
29	Band Gap Modification of TiO2 Nanoparticles by Ascorbic Acid-Stabilized Pd Nanoparticles for Photocatalytic Suzuki–Miyaura and Ullmann Coupling Reactions. Catalysis Letters, 2019, 149, 1595-1610.	2.6	27
30	A Green, Catalyst-Free Method for the Synthesis of Sulfonamides and Sulfonylazides. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 186, 140-148.	1.6	26
31	Economical Oxygenation of Olefins and Sulfides Catalyzed by New Molybdenum(VI) Tridentate Schiff Base Complexes: Synthesis and Crystal Structure. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1023-1030.	1.2	26
32	A dendritic TiO ₂ –Co(<scp>ii</scp>) nanocomposite based on the melamine catalyzed one-pot aerobic photocatalytic synthesis of benzimidazoles. New Journal of Chemistry, 2018, 42, 6449-6456.	2.8	26
33	The catalytic performance of Mn-tetraarylporphyrins in the highly selective oxidation of primary aromatic amines to azo compounds by Bu4NHSO5. Dyes and Pigments, 2009, 80, 80-85.	3.7	25
34	A cobalt Schiff base complex on TiO ₂ nanoparticles as an effective synergistic nanocatalyst for aerobic C–H oxidation. RSC Advances, 2016, 6, 25034-25046.	3.6	25
35	An Environmentally Benign Catalytic Method for Efficient and Selective Nucleophilic Ring Opening of Oxiranes by Zirconium Tetrakis(dodecyl Sulfate). Helvetica Chimica Acta, 2010, 93, 405-413.	1.6	24
36	Solar-driven advanced oxidation process catalyzed by metal–organic frameworks for water depollution. Polyhedron, 2019, 170, 325-333.	2.2	24

#	Article	IF	CITATIONS
37	A novel strategy for clean and selective oxygenation of hydrocarbons with n-Bu4NHSO5 in neat water catalyzed by recyclable water-insoluble iron (III) tetraphenylporphyrins. Catalysis Communications, 2011, 12, 761-765.	3.3	23
38	ZrCl4/Nal and ZrOCl2·Â8H2O/Nal as effective systems for reductive coupling of sulfonyl chlorides and chemoselective deoxygenation of sulfoxides. Journal of Sulfur Chemistry, 2005, 26, 313-324.	2.0	22
39	Highly selective aqueous heterogeneous oxygenation of hydrocarbons catalyzed by recyclable hydrophobic copper (II) phthalocyanine nanoparticles. Journal of Molecular Catalysis A, 2012, 357, 141-147.	4.8	22
40	Catalytic activity of a zirconium(IV) Schiff base complex in facile and highly efficient synthesis of indole derivatives. Transition Metal Chemistry, 2011, 36, 685-690.	1.4	21
41	Aerobic benzylic C–H oxidation catalyzed by a titania-based organic–inorganic nanohybrid. RSC Advances, 2016, 6, 54649-54660.	3.6	21
42	Enhanced aqueous oxidation activity and durability of simple manganese(<scp>iii</scp>) salen complex axially anchored to maghemite nanoparticles. RSC Advances, 2016, 6, 64640-64650.	3.6	21
43	{Mo ₇₂ Fe ₃₀ } Nanoclusters for the Visible-Light-Driven Photocatalytic Degradation of Organic Dyes. ACS Applied Nano Materials, 2020, 3, 648-657.	5.0	21
44	A new catalytic method for ecofriendly synthesis of bis―and trisindolylmethanes by zirconyldodecylsulfate under mild conditions. Journal of Heterocyclic Chemistry, 2009, 46, 535-539.	2.6	20
45	Catalytic activity and selectivity of reusable α-MoO ₃ nanobelts toward oxidation of olefins and sulfides using economical peroxides. RSC Advances, 2014, 4, 1601-1608.	3.6	20
46	Aerobic {Mo ₇₂ V ₃₀ } nanoclusterâ€catalysed heterogeneous oneâ€pot tandem synthesis of benzimidazoles. Applied Organometallic Chemistry, 2019, 33, e4638.	3.5	20
47	A nanoscopic icosahedral {Mo ₇₂ Fe ₃₀ } cluster catalyzes the aerobic synthesis of benzimidazoles. RSC Advances, 2019, 9, 34854-34861.	3.6	19
48	Zirconium Tetrakis(dodecylsulfate) as an Efficient and Recyclable Lewis Acid-Surfactant-Combined Catalyzed C-C and C-N Bond Forming Under Mild and Environmentally Benign Conditions. Letters in Organic Chemistry, 2009, 6, 94-99.	0.5	18
49	{Mo72Cr30} nanocluster as a novel self-separating catalyst for hydrogen peroxide olefin epoxidation. Catalysis Communications, 2017, 95, 88-91.	3.3	18
50	A Cooperative Effect in a Novel Bimetallic Mo–V Nanocomplex Catalyzed Selective Aerobic C–H Oxidation. ACS Omega, 2019, 4, 3601-3610.	3.5	18
51	Clean and Heterogeneous Condensation of 1,2-Diamines with 1,2-Dicarbonyls Catalyzed by {Mo132} Giant Ball Nanocluster. Journal of Cluster Science, 2015, 26, 1439-1450.	3.3	17
52	Enhanced catalytic activity of Zr(IV) complex with simple tetradentate Schiff base ligand in the clean synthesis of indole derivatives. Inorganic Chemistry Communication, 2011, 14, 1732-1736.	3.9	16
53	A synergistic effect of a cobalt Schiff base complex and TiO ₂ nanoparticles on aerobic olefin epoxidation. RSC Advances, 2016, 6, 79085-79089.	3.6	16
54	Palladium Niacin Complex Immobilized on Starch-Coated Maghemite Nanoparticles as an Efficient Homo- and Cross-coupling Catalyst for the Synthesis of Symmetrical and Unsymmetrical Biaryls. Catalysis Letters, 2018, 148, 3165-3177.	2.6	16

#	Article	IF	CITATIONS
55	A New Catalytic Method for Eco-Friendly Synthesis of Quinoxalines by Zirconium (IV) Oxide Chloride Octahydrate Under Mild Conditions. Letters in Organic Chemistry, 2011, 8, 202-209.	0.5	15
56	Nanoaggregates of Simple Mn Porphyrin Complexes as Catalysts for the Selective Oxidation of Hydrocarbons. European Journal of Inorganic Chemistry, 2013, 2013, 2657-2664.	2.0	15
57	Aerobic Stereoselective Oxidation of Olefins on a Visible-Light-Irradiated Titanium Dioxide–Cobalt–Ascorbic Acid Nanohybrid. Synlett, 2017, 28, 235-238.	1.8	15
58	Supramolecular photocatalyst of Palladium (II) Encapsulated within Dendrimer on TiO ₂ nanoparticles for Photoâ€induced Suzukiâ€Miyaura and Sonogashira Cross oupling reactions. Applied Organometallic Chemistry, 2019, 33, e5093.	3.5	15
59	Phosphonate-based Metal Organic Frameworks as Robust Heterogeneous Catalysts for TBHP Oxidation of Benzylic Alcohols. Catalysis Letters, 2017, 147, 1714-1721.	2.6	14
60	Tandem Photocatalysis Protocol for Hydrogen Generation/Olefin Hydrogenation Using Pd-g-C ₃ N ₄ -Imine/TiO ₂ Nanoparticles. Inorganic Chemistry, 2021, 60, 9484-9495.	4.0	14
61	A top-down design for easy gram scale synthesis of melem nano rectangular prisms with improved surface area. RSC Advances, 2021, 11, 38862-38867.	3.6	14
62	A photoinduced cross-dehydrogenative-coupling (CDC) reaction between aldehydes and <i>N</i> -hydroxyimides by a TiO ₂ –Co ascorbic acid nanohybrid under visible light irradiation. New Journal of Chemistry, 2018, 42, 807-811.	2.8	13
63	Visible-light driven catalase-like activity of blackberry-shaped {Mo ₇₂ Fe ₃₀ } nanovesicles: combined kinetic and mechanistic studies. Catalysis Science and Technology, 2018, 8, 4645-4656.	4.1	13
64	The enhanced visible-light-induced photocatalytic activities of bimetallic Mn–Fe MOFs for the highly efficient reductive removal of Cr(vi). RSC Advances, 2021, 11, 21127-21136.	3.6	12
65	Nickel(<scp>ii</scp>) riboflavin complex as an efficient nanobiocatalyst for heterogeneous and sustainable oxidation of benzylic alcohols and sulfides. New Journal of Chemistry, 2018, 42, 7383-7391.	2.8	11
66	Iron Ascorbic Acid Complex Coated TiO ₂ Nanoparticles Enhancing Visible-Light Oxidation Performance. ChemistrySelect, 2017, 2, 2901-2909.	1.5	10
67	Cu(<scp>ii</scp>) vitamin C tunes photocatalytic activity of TiO ₂ nanoparticles for visible light-driven aerobic oxidation of benzylic alcohols. RSC Advances, 2020, 10, 12053-12059.	3.6	10
68	Efficient Organic Transformations Mediated by ZrOCl ₂ ·8H ₂ O in Water. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1470-1482.	1.6	9
69	A zirconium Schiff base complex immobilized on starch-coated maghemite nanoparticles catalyzes heterogeneous condensation of 1,2-diamines with 1,2-dicarbonyl compounds. Transition Metal Chemistry, 2016, 41, 205-211.	1.4	9
70	Benzyltributylammonium periodate as a novel and safe oxygen source for Mn-porphyrin catalyzed practical and highly selective oxygenation of hydrocarbons. Polyhedron, 2011, 30, 2303-2309.	2.2	8
71	Cu(<scp>ii</scp>)–vitamin C-complex catalyzed photo-induced homocoupling reaction of aryl boronic acid in base-free and visible light conditions. RSC Advances, 2022, 12, 4931-4938.	3.6	8
72	Heterogeneous Fenton-like activity of novel metallosalophen magnetic nanocomposites: significant anchoring group effect. RSC Advances, 2019, 9, 32966-32976.	3.6	7

#	Article	IF	CITATIONS
73	A DFT investigation of axial N -donor ligands effects on the high valent manganese-oxo <i>meso</i> -tetraphenyl porphyrin. Journal of Porphyrins and Phthalocyanines, 2015, 19, 651-662.	0.8	6
74	A Starâ€Shaped Triazineâ€Based Vitamin B ₅ Copper(II) Nanocatalyst for Tandem Aerobic Synthesis of Bis(indolyl)methanes. European Journal of Organic Chemistry, 2020, 2020, 4122-4129.	2.4	6
75	Copper(II)-Ethanolamine Triazine Complex on Chitosan-Functionalized Nanomaghemite for Catalytic Aerobic Oxidation of Benzylic Alcohols. Catalysis Letters, 2021, 151, 45-55.	2.6	6
76	A reusable zirconium(IV) Schiff base complex catalyzes highly efficient synthesis of quinoxalines under mild conditions. Transition Metal Chemistry, 2013, 38, 31-36.	1.4	5
77	Screening of different interactions in oxo-manganese porphyrin dimers containing axial N-donor ligands: a theoretical study. RSC Advances, 2018, 8, 9770-9774.	3.6	5
78	Magnetic Bisphosphonic Acid Nanohybrid Catalyzed Heterogeneous Synthesis of Heterocylcles. ChemistrySelect, 2018, 3, 1234-1241.	1.5	4
79	Highly selective and efficient oxidation of benzylic alcohols with sulfate radical over metal-organic frameworks. Journal of Organometallic Chemistry, 2019, 903, 120995.	1.8	4
80	Tetrahedral Keggin Core Tunes the Visible Light-Assisted Catalase-Like Activity of Icosahedral Keplerate Shell. Inorganic Chemistry, 2022, 61, 7878-7889.	4.0	4
81	Significant hydrogen-bonding effect on the reactivity of high-valent manganese(V)–oxo porphyrins in C–H bond activation: A DFT study. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1197-1203.	0.8	2
82	Green Condensation of Various 1,2-diamine and 1,2- dicarbonyl Compounds Catalyzed by Reusable Zirconium (IV) Tetradentate Schiff Base Complex. Current Catalysis, 2014, 3, 260-265.	0.5	2
83	Melem Nanorectangular Prism-Modified {Mo ₇₂ Fe ₃₀ } Nanocapsule as a Visible-Light-Assisted Photocatalyst for Catalase-Like Activity. ACS Applied Nano Materials, 2022, 5, 7917-7931.	5.0	2
84	A Selective and Sustainable Sulfoxidation Method Catalyzed by Reusable Manganese (III) Schiff Base Complexes. Current Catalysis, 2015, 4, 4-11.	0.5	1
85	Stereoelectronic effects of porphyrin ligand on the oxygen transfer efficiency of high valent manganese-oxo porphyrin species: A DFT study. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1130-1139.	0.8	1
86	A Simple, and Highly Selective Method for the Iodination of Alcohols Using ZrCl4/Nal ChemInform, 2005, 36, no.	0.0	0
87	Rapid, Highly Efficient and Stereoselective Deoxygenation of Epoxides by ZrCl4/Nal ChemInform, 2005, 36, no.	0.0	0
88	Silica iminopyridineâ€functionalized nanomaghemite enhances the oxygenation activity and durability of simple Co(II) salophen complex. Applied Organometallic Chemistry, 2020, 34, e5535.	3.5	0