List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7154565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Algorithm selection on a meta level. Machine Learning, 2023, 112, 1253-1286.	5.4	3
2	Deep Q-Learning: Theoretical Insights From an Asymptotic Analysis. IEEE Transactions on Artificial Intelligence, 2022, 3, 139-151.	4.7	6
3	How to measure uncertainty in uncertainty sampling for active learning. Machine Learning, 2022, 111, 89-122.	5.4	46
4	Learning context-dependent choice functions. International Journal of Approximate Reasoning, 2022, 140, 116-155.	3.3	2
5	A flexible class of dependence-aware multi-label loss functions. Machine Learning, 2022, 111, 713.	5.4	1
6	Agnostic Explanation of Model Change based on Feature Importance. KI - Kunstliche Intelligenz, 2022, 36, 211-224.	3.2	5
7	Machine Learning With the Sugeno Integral: The Case of Binary Classification. IEEE Transactions on Fuzzy Systems, 2021, 29, 3723-3733.	9.8	5
8	Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids: From Simulations to Real-World Experiments. IEEE Access, 2021, 9, 35654-35669.	4.2	6
9	Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Machine Learning, 2021, 110, 457-506.	5.4	487
10	Efficient set-valued prediction in multi-class classification. Data Mining and Knowledge Discovery, 2021, 35, 1435-1469.	3.7	12
11	Coevolution of remaining useful lifetime estimation pipelines for automated predictive maintenance. , 2021, , .		7
12	TSK-Streams: learning TSK fuzzy systems for regression on data streams. Data Mining and Knowledge Discovery, 2021, 35, 1941-1971.	3.7	0
13	On testing transitivity in online preference learning. Machine Learning, 2021, 110, 2063-2084.	5.4	0
14	Instance weighting through data imprecisiation. International Journal of Approximate Reasoning, 2021, 134, 1-14.	3.3	4
15	AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3037-3054.	13.9	29
16	Explanation as a Social Practice: Toward a Conceptual Framework for the Social Design of AI Systems. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 717-728.	3.8	20
17	Predicting Machine Learning Pipeline Runtimes in the Context of Automated Machine Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3055-3066.	13.9	18
18	Learning Gradient Boosted Multi-label Classification Rules. Lecture Notes in Computer Science, 2021, , 124-140.	1.3	10

#	Article	IF	CITATIONS
19	Performance Prediction for Hardware-Software Configurations: A Case Study for Video Games. Lecture Notes in Computer Science, 2021, , 222-234.	1.3	0
20	Multimodal Turn-Taking: Motivations, Methodological Challenges, and Novel Approaches. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12, 260-271.	3.8	11
21	Algorithm selection for software validation based on graph kernels. Automated Software Engineering, 2020, 27, 153-186.	2.9	22
22	Generalized transitivity: A systematic comparison of concepts with an application to preferences in the Babington Smith model. International Journal of Approximate Reasoning, 2020, 119, 373-407.	3.3	3
23	Aleatoric and Epistemic Uncertainty with Random Forests. Lecture Notes in Computer Science, 2020, , 444-456.	1.3	20
24	Pool-Based Realtime Algorithm Configuration: A Preselection Bandit Approach. Lecture Notes in Computer Science, 2020, , 216-232.	1.3	3
25	Hybrid Ranking and Regression for Algorithm Selection. Lecture Notes in Computer Science, 2020, , 59-72.	1.3	4
26	Neural Representation and Learning of Hierarchical 2-additive Choquet Integrals. , 2020, , .		7
27	Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning. IEEE Computational Intelligence Magazine, 2019, 14, 31-44.	3.2	40
28	Multi-target prediction: a unifying view on problems and methods. Data Mining and Knowledge Discovery, 2019, 33, 293-324.	3.7	55
29	Epistemic Uncertainty Sampling. Lecture Notes in Computer Science, 2019, , 72-86.	1.3	15
30	Dyad ranking using Plackett–Luce models based on joint feature representations. Machine Learning, 2018, 107, 903-941.	5.4	16
31	Reduction Stumps for Multi-class Classification. Lecture Notes in Computer Science, 2018, , 225-237.	1.3	1
32	Preference-Based Reinforcement Learning Using Dyad Ranking. Lecture Notes in Computer Science, 2018, , 161-175.	1.3	1
33	(WIP) Towards the Automated Composition of Machine Learning Services. , 2018, , .		4
34	On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning, 2018, 107, 1537-1560.	5.4	12
35	ML-Plan: Automated machine learning via hierarchical planning. Machine Learning, 2018, 107, 1495-1515.	5.4	104

Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. , 2018, , .

10

#	Article	IF	CITATIONS
37	Imprecise Matching of Requirements Specifications for Software Services Using Fuzzy Logic. IEEE Transactions on Software Engineering, 2017, 43, 739-759.	5.6	7
38	Predicting rankings of software verification tools. , 2017, , .		23
39	Learning TSK Fuzzy Rules from Data Streams. Lecture Notes in Computer Science, 2017, , 559-574.	1.3	1
40	Learning to Aggregate Using Uninorms. Lecture Notes in Computer Science, 2016, , 756-771.	1.3	8
41	Exploiting HIV-1 protease and reverse transcriptase cross-resistance information for improved drug resistance prediction by means of multi-label classification. BioData Mining, 2016, 9, 10.	4.0	26
42	Consistency of Probabilistic Classifier Trees. Lecture Notes in Computer Science, 2016, , 511-526.	1.3	7
43	From knowledge-based to data-driven fuzzy modeling. Informatik-Spektrum, 2015, 38, 500-509.	1.3	11
44	Fast Fuzzy Pattern Tree Learning for Classification. IEEE Transactions on Fuzzy Systems, 2015, 23, 2024-2033.	9.8	17
45	Does machine learning need fuzzy logic?. Fuzzy Sets and Systems, 2015, 281, 292-299.	2.7	60
46	Recovery analysis for adaptive learning from non-stationary data streams: Experimental design and case study. Neurocomputing, 2015, 150, 250-264.	5.9	31
47	Preference-based Learning of Ideal Solutions in TOPSIS-like Decision Models. Journal of Multi-Criteria Decision Analysis, 2015, 22, 175-183.	1.9	5
48	Dyad Ranking Using A Bilinear Plackett-Luce Model. Lecture Notes in Computer Science, 2015, , 227-242.	1.3	10
49	Superset Learning Based on Generalized Loss Minimization. Lecture Notes in Computer Science, 2015, , 260-275.	1.3	18
50	Identification of Functionally Related Enzymes by Learning-to-Rank Methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 1157-1169.	3.0	4
51	Preference-based reinforcement learning: evolutionary direct policy search using a preference-based racing algorithm. Machine Learning, 2014, 97, 327-351.	5.4	18
52	Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty. Information Sciences, 2014, 255, 16-29.	6.9	76
53	Dependent binary relevance models for multi-label classification. Pattern Recognition, 2014, 47, 1494-1508.	8.1	120
54	Guest editors' introduction: special issue of the ECML/PKDD 2014 journal track. Data Mining and Knowledge Discovery, 2014, 28, 1129-1133.	3.7	0

#	Article	IF	CITATIONS
55	Guest Editors' introduction: special issue of the ECML/PKDD 2014 journal track. Machine Learning, 2014, 97, 1-3.	5.4	2
56	Visualization of evolving fuzzy rule-based systems. Evolving Systems, 2014, 5, 175-191.	3.9	9
57	Open challenges for data stream mining research. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2014, 16, 1-10.	4.0	215
58	Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization. International Journal of Approximate Reasoning, 2014, 55, 1519-1534.	3.3	74
59	On the Problem of Error Propagation in Classifier Chains for Multi-label Classification. Studies in Classification, Data Analysis, and Knowledge Organization, 2014, , 163-170.	0.2	32
60	Graphâ€based methods for protein structure comparison. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2013, 3, 307-320.	6.8	5
61	Fuzzy pattern trees as an alternative to rule-based fuzzy systems: Knowledge-driven, data-driven and hybrid modeling of color yield in polyester dyeing. , 2013, , .		2
62	Evolving fuzzy pattern trees for binary classification on data streams. Information Sciences, 2013, 220, 34-45.	6.9	28
63	Rule Chains for Visualizing Evolving Fuzzy Rule-Based Systems. Advances in Intelligent Systems and Computing, 2013, , 279-288.	0.6	2
64	Efficient Learning of Classifiers Based on the 2-Additive Choquet Integral. Studies in Computational Intelligence, 2013, , 17-29.	0.9	15
65	Fuzzy Pattern Trees: Ein alternativer Ansatz zur Fuzzy-Modellierung. Automatisierungstechnik, 2012, 60, 622-629.	0.8	2
66	Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Machine Learning, 2012, 89, 123-156.	5.4	56
67	Learning monotone nonlinear models using the Choquet integral. Machine Learning, 2012, 89, 183-211.	5.4	94
68	Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking. IEEE Transactions on Fuzzy Systems, 2012, 20, 1102-1113.	9.8	58
69	GPU-based Cloud computing for comparing the structure of protein binding sites. , 2012, , .		7
70	IBLStreams: a system for instance-based classification and regression on data streams. Evolving Systems, 2012, 3, 235-249.	3.9	62
71	Fingerprint Kernels for Protein Structure Comparison. Molecular Informatics, 2012, 31, 443-452.	2.5	5
72	On label dependence and loss minimization in multi-label classification. Machine Learning, 2012, 88, 5-45.	5.4	215

#	Article	IF	CITATIONS
73	A formal and empirical analysis of the fuzzy gamma rank correlation coefficient. Information Sciences, 2012, 206, 1-17.	6.9	15
74	Grouping, Overlap, and Generalized Bientropic Functions for Fuzzy Modeling of Pairwise Comparisons. IEEE Transactions on Fuzzy Systems, 2012, 20, 405-415.	9.8	241
75	Comparing Fuzzy Partitions: A Generalization of the Rand Index and Related Measures. IEEE Transactions on Fuzzy Systems, 2012, 20, 546-556.	9.8	89
76	Top-Down Induction of Fuzzy Pattern Trees. IEEE Transactions on Fuzzy Systems, 2011, 19, 241-252.	9.8	56
77	Fuzzy machine learning and data mining ^a . Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1, 269-283.	6.8	6
78	Fuzzy sets in machine learning and data mining. Applied Soft Computing Journal, 2011, 11, 1493-1505.	7.2	91
79	On predictive accuracy and risk minimization in pairwise label ranking. Journal of Computer and System Sciences, 2010, 76, 49-62.	1.2	29
80	Combining predictions in pairwise classification: An optimal adaptive voting strategy and its relation to weighted voting. Pattern Recognition, 2010, 43, 128-142.	8.1	117
81	Similarity measures for protein structures based on fuzzy histogram comparison. , 2010, , .		11
82	Pattern trees for regression and fuzzy systems modeling. , 2010, , .		10
83	Predicting Partial Orders: Ranking with Abstention. Lecture Notes in Computer Science, 2010, , 215-230.	1.3	29
84	Regret Analysis for Performance Metrics in Multi-Label Classification: The Case of Hamming and Subset Zero-One Loss. Lecture Notes in Computer Science, 2010, , 280-295.	1.3	24
85	Similarity Analysis of Protein Binding Sites: A Generalization of the Maximum Common Subgraph Measure Based on Quasi-Clique Detection. , 2009, , .		6
86	FUZZY OPERATOR TREES FOR MODELING RATING FUNCTIONS. International Journal of Computational Intelligence and Applications, 2009, 08, 413-428.	0.8	20
87	FR3: A Fuzzy Rule Learner for Inducing Reliable Classifiers. IEEE Transactions on Fuzzy Systems, 2009, 17, 138-149.	9.8	89
88	Decision tree and instance-based learning for label ranking. , 2009, , .		72
89	Combining instance-based learning and logistic regression for multilabel classification. Machine Learning, 2009, 76, 211-225.	5.4	336
90	FURIA: an algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery, 2009, 19, 293-319.	3.7	351

#	Article	IF	CITATIONS
91	Merging chemical and biological space: Structural mapping of enzyme binding pocket space. Proteins: Structure, Function and Bioinformatics, 2009, 76, 317-330.	2.6	38
92	Why Fuzzy Decision Trees are Good Rankers. IEEE Transactions on Fuzzy Systems, 2009, 17, 1233-1244.	9.8	48
93	Efficient Construction of Multiple Geometrical Alignments for the Comparison of Protein Binding Sites. , 2009, , .		1
94	Multilabel classification via calibrated label ranking. Machine Learning, 2008, 73, 133-153.	5.4	701
95	A critical analysis of variants of the AUC. Machine Learning, 2008, 72, 247-262.	5.4	39
96	Learning valued preference structures for solving classification problems. Fuzzy Sets and Systems, 2008, 159, 2337-2352.	2.7	83
97	Label ranking by learning pairwise preferences. Artificial Intelligence, 2008, 172, 1897-1916.	5.8	378
98	Learning Similarity Functions from Qualitative Feedback. Lecture Notes in Computer Science, 2008, , 120-134.	1.3	12
99	Is an ordinal class structure useful in classifier learning?. International Journal of Data Mining, Modelling and Management, 2008, 1, 45.	0.1	38
100	Graph Alignment: Fuzzy Pattern Mining for the Structural Analysis of Protein Active Sites. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	1
101	Efficient instance-based learning on data streams. Intelligent Data Analysis, 2007, 11, 627-650.	0.9	52
102	Comparing probability measures using possibility theory: A notion of relative peakedness. International Journal of Approximate Reasoning, 2007, 45, 364-385.	3.3	25
103	Risk assessment system of natural hazards: A new approach based on fuzzy probability. Fuzzy Sets and Systems, 2007, 158, 987-999.	2.7	105
104	Multiple Graph Alignment for the Structural Analysis of Protein Active Sites. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 310-320.	3.0	9
105	From the Similarity Analysis of Protein Cavities to the Functional Classification of Protein Families Using Cavbase. Journal of Molecular Biology, 2006, 359, 1023-1044.	4.2	89
106	Learning from ambiguously labeled examples*. Intelligent Data Analysis, 2006, 10, 419-439.	0.9	109
107	Physicochemical descriptors to discriminate protein-protein interactions in permanent and transient complexes selected by means of machine learning algorithms. Proteins: Structure, Function and Bioinformatics, 2006, 65, 607-622.	2.6	48
108	Online clustering of parallel data streams. Data and Knowledge Engineering, 2006, 58, 180-204.	3.4	196

#	Article	IF	CITATIONS
109	A systematic approach to the assessment of fuzzy association rules. Data Mining and Knowledge Discovery, 2006, 13, 167-192.	3.7	160
110	Fuzzy methods for case-based recommendation and decision support. Journal of Intelligent Information Systems, 2006, 27, 95-115.	3.9	30
111	Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy Sets and Systems, 2005, 156, 387-406.	2.7	176
112	Flexible constraints for regularization in learning from data. International Journal of Intelligent Systems, 2004, 19, 525-541.	5.7	0
113	AN EARTHQUAKE RISK ASSESSMENT METHOD BASED ON FUZZY PROBABILITY. , 2004, , .		3
114	FLEXIBILITY AND FUZZY CASE-BASED EVALUATION IN QUERYING: AN ILLUSTRATION IN AN EXPERIMENTAL SETTING. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2003, 11, 43-66.	1.9	40
115	Inducing Fuzzy Concepts through Extended Version Space Learning. Lecture Notes in Computer Science, 2003, , 677-684.	1.3	4
116	Similarity-based inference as evidential reasoning. International Journal of Approximate Reasoning, 2001, 26, 67-100.	3.3	19
117	A Method for Predicting Solutions in Case-Based Problem Solving. Lecture Notes in Computer Science, 2000, , 124-135.	1.3	1
118	Flexible Control of Case-Based Prediction in the Framework of Possibility Theory. Lecture Notes in Computer Science, 2000, , 61-73.	1.3	11
119	Exploiting Similarity for Supporting Data Analysis and Problem Solving. Lecture Notes in Computer Science, 1999, , 257-268.	1.3	2