Jian-Min Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7154001/publications.pdf

Version: 2024-02-01

		10389	14208
129	22,022	72	128
papers	citations	h-index	g-index
163	163	163	14779
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rice extraâ€large G proteins play pivotal roles in controlling disease resistance and yieldâ€related traits. New Phytologist, 2022, 234, 607-617.	7.3	8
2	The origin and evolution of a plant resistosome. Plant Cell, 2022, 34, 1600-1620.	6.6	22
3	Research on ADR1s helps understanding the plant immune network. Stress Biology, 2022, 2, 1.	3.1	2
4	Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis. Journal of Genetics and Genomics, 2022, 49, 756-765.	3.9	26
5	Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. Journal of Genetics and Genomics, 2022, 49, 823-832.	3.9	9
6	From plant immunity to crop disease resistance. Journal of Genetics and Genomics, 2022, 49, 693-703.	3.9	24
7	Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185, 2961-2974.e19.	28.9	74
8	Plasma membrane-nucleo-cytoplasmic coordination of a receptor-like cytoplasmic kinase promotes EDS1-dependent plant immunity. Nature Plants, 2022, 8, 802-816.	9.3	30
9	A receptorâ€like protein from <i>Nicotiana benthamiana</i> mediates VmE02 PAMPâ€triggered immunity. New Phytologist, 2021, 229, 2260-2272.	7.3	51
10	Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592, 105-109.	27.8	590
11	The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell, 2021, 184, 3528-3541.e12.	28.9	308
12	A <i>Phytophthora capsici</i> RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. New Phytologist, 2021, 232, 264-278.	7.3	24
13	Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. Annual Review of Phytopathology, 2021, 59, 239-263.	7.8	26
14	The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature, 2021, 598, 495-499.	27.8	223
15	MPK3- and MPK6-mediated VLN3 phosphorylation regulates actin dynamics during stomatal immunity in Arabidopsis. Nature Communications, 2021, 12, 6474.	12.8	24
16	Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 2020, 62, 2-24.	8.5	152
17	Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27044-27053.	7.1	63
18	Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. Molecular Plant, 2020, 13, 1358-1378.	8.3	82

#	Article	IF	CITATIONS
19	Bacterial Effectors Induce Oligomerization of Immune Receptor ZAR1 InÂVivo. Molecular Plant, 2020, 13, 793-801.	8.3	65
20	Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. Trends in Plant Science, 2020, 25, 446-454.	8.8	84
21	An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence. Cell Host and Microbe, 2020, 27, 601-613.e7.	11.0	66
22	Transnitrosylation Mediated by the Non-canonical Catalase ROG1 Regulates Nitric Oxide Signaling in Plants. Developmental Cell, 2020, 53, 444-457.e5.	7.0	51
23	Plant Immunity: Danger Perception and Signaling. Cell, 2020, 181, 978-989.	28.9	520
24	A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Research, 2019, 29, 820-831.	12.0	119
25	Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nature Plants, 2019, 5, 1167-1176.	9.3	130
26	PUB25 and PUB26 Promote Plant Freezing Tolerance by Degrading the Cold Signaling Negative Regulator MYB15. Developmental Cell, 2019, 51, 222-235.e5.	7.0	105
27	Regulation of mitochondrial NAD pool via NAD+ transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. Science China Life Sciences, 2019, 62, 991-1002.	4.9	24
28	Early signalling mechanisms underlying receptor kinase-mediated immunity in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180310.	4.0	18
29	Ligand-triggered allosteric ADP release primes a plant NLR complex. Science, 2019, 364, .	12.6	334
30	Reconstitution and structure of a plant NLR resistosome conferring immunity. Science, 2019, 364, .	12.6	551
31	Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 2018, 60, 805-826.	8.5	397
32	The secret of fertilization in flowering plants unveiled. Science Bulletin, 2018, 63, 408-410.	9.0	12
33	A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Molecular Cell, 2018, 69, 493-504.e6.	9.7	161
34	Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase–Mediated Signaling. Annual Review of Plant Biology, 2018, 69, 267-299.	18.7	303
35	Danger-Associated Peptides Close Stomata by OST1-Independent Activation of Anion Channels in Guard Cells. Plant Cell, 2018, 30, 1132-1146.	6.6	57
36	Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Research, 2018, 28, 529-543.	12.0	87

#	Article	IF	CITATIONS
37	A single transcription factor promotes both yield and immunity in rice. Science, 2018, 361, 1026-1028.	12.6	296
38	The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host and Microbe, 2018, 24, 379-391.e5.	11.0	95
39	Luciferase Complementation Assay for Proteinâ€Protein Interactions in Plants. Current Protocols in Plant Biology, 2018, 3, 42-50.	2.8	72
40	Receptor-Like Cytoplasmic Kinases Directly Link Diverse Pattern Recognition Receptors to the Activation of Mitogen-Activated Protein Kinase Cascades in Arabidopsis. Plant Cell, 2018, 30, 1543-1561.	6.6	219
41	Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling. Plant Physiology, 2018, 177, pp.00486.2018.	4.8	103
42	Small RNA trafficking at the forefront of plant–pathogen interactions. F1000Research, 2018, 7, 1633.	1.6	6
43	MAP Kinase Signaling Pathways: A Hub of Plant-Microbe Interactions. Cell Host and Microbe, 2017, 21, 270-273.	11.0	73
44	Apoplastic ROS signaling in plant immunity. Current Opinion in Plant Biology, 2017, 38, 92-100.	7.1	362
45	Salicylic acid., 2017,, 273-289.		8
46	Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Plant Cell, 2017, 29, 618-637.	6.6	552
47	The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens, 2016, 12, e1005811.	4.7	113
48	A gainâ€ofâ€function mutation in <i>Msl10</i> triggers cell death and woundâ€induced hyperaccumulation of jasmonic acid in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2016, 58, 600-609.	8.5	28
49	Receptor-like kinases take center stage in plant biology. Science China Life Sciences, 2016, 59, 863-866.	4.9	10
50	Plant Pathology: A Life and Death Struggle in Rice Blast Disease. Current Biology, 2016, 26, R843-R845.	3.9	12
51	Activation-Dependent Destruction of a Co-receptor by a Pseudomonas syringae Effector Dampens Plant Immunity. Cell Host and Microbe, 2016, 20, 504-514.	11.0	94
52	Plant pattern-recognition receptors controlling innate immunity. Science China Life Sciences, 2016, 59, 878-888.	4.9	46
53	A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner. Scientific Reports, 2016, 6, 26951.	3.3	38
54	<scp>PEPR</scp> s spice up plant immunity. EMBO Journal, 2016, 35, 4-5.	7.8	7

#	Article	IF	Citations
55	Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. ELife, 2016, 5, e13568.	6.0	217
56	$\langle i \rangle S \langle i \rangle$ -Nitrosylation Positively Regulates Ascorbate Peroxidase Activity during Plant Stress Responses. Plant Physiology, 2015, 167, 1604-1615.	4.8	227
57	An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the <i>Pseudomonas syringae</i> Effector Protein AvrB for Stomatal Invasion. Plant Cell, 2015, 27, 2032-2041.	6.6	95
58	Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Research, 2015, 25, 621-633.	12.0	80
59	The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants. Cell Host and Microbe, 2015, 18, 285-295.	11.0	212
60	Multiple Rice MicroRNAs Are Involved in Immunity against the Blast Fungus <i>Magnaporthe oryzae</i> . Plant Physiology, 2014, 164, 1077-1092.	4.8	310
61	Two Cytoplasmic Effectors of <i>Phytophthora sojae</i> Regulate Plant Cell Death via Interactions with Plant Catalases. Plant Physiology, 2014, 167, 164-175.	4.8	125
62	The FLS2-Associated Kinase BIK1 Directly Phosphorylates the NADPH Oxidase RbohD to Control Plant Immunity. Cell Host and Microbe, 2014, 15, 329-338.	11.0	635
63	Proline Isomerization of the Immune Receptor-Interacting Protein RIN4 by a Cyclophilin Inhibits Effector-Triggered Immunity in Arabidopsis. Cell Host and Microbe, 2014, 16, 473-483.	11.0	48
64	Receptorâ€ <scp>L</scp> ike Kinases in Plant Innate Immunity. Journal of Integrative Plant Biology, 2013, 55, 1271-1286.	8.5	112
65	Structural Basis for flg22-Induced Activation of the <i>Arabidopsis</i> FLS2-BAK1 Immune Complex. Science, 2013, 342, 624-628.	12.6	604
66	BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6205-6210.	7.1	291
67	The U-Box/ARM E3 Ligase PUB13 Regulates Cell Death, Defense, and Flowering Time in Arabidopsis Â. Plant Physiology, 2012, 159, 239-250.	4.8	129
68	Phytopathogen Effectors Subverting Host Immunity: Different Foes, Similar Battleground. Cell Host and Microbe, 2012, 12, 484-495.	11.0	422
69	Plant–bacterial pathogen interactions mediated by type III effectors. Current Opinion in Plant Biology, 2012, 15, 469-476.	7.1	200
70	A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature, 2012, 485, 114-118.	27.8	275
71	Disruption of PAMP-Induced MAP Kinase Cascade by a Pseudomonas syringae Effector Activates Plant Immunity Mediated by the NB-LRR Protein SUMM2. Cell Host and Microbe, 2012, 11, 253-263.	11.0	321
72	Effectors of Bacterial Pathogens: Modes of Action and Plant Targets. , 2012, , 81-106.		0

#	Article	IF	Citations
73	Chitin-Induced Dimerization Activates a Plant Immune Receptor. Science, 2012, 336, 1160-1164.	12.6	534
74	Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12539-12544.	7.1	622
75	BAK1 Is Not a Target of the <i>Pseudomonas syringae</i> Interactions, 2011, 24, 100-107.	2.6	79
76	Role of small RNAs in the interaction between Arabidopsis and Pseudomonas syringae. Frontiers in Biology, 2011, 6, 462-467.	0.7	3
77	Effector-Triggered and Pathogen-Associated Molecular Pattern–Triggered Immunity Differentially Contribute to Basal Resistance to ⟨i⟩Pseudomonas syringae⟨/i⟩. Molecular Plant-Microbe Interactions, 2010, 23, 940-948.	2.6	53
78	Effectorâ€triggered innate immunity contributes <i>Arabidopsis</i> resistance to <i>Xanthomonas campestris</i> . Molecular Plant Pathology, 2010, 11, 783-793.	4.2	14
79	A <i>Pseudomonas syringae</i> ADP-Ribosyltransferase Inhibits <i>Arabidopsis</i> Mitogen-Activated Protein Kinase Kinases. Plant Cell, 2010, 22, 2033-2044.	6.6	215
80	Identification of MicroRNAs Involved in Pathogen-Associated Molecular Pattern-Triggered Plant Innate Immunity. Plant Physiology, 2010, 152, 2222-2231.	4.8	359
81	<i>Pseudomonas syringae</i> Two-Component Response Regulator RhpR Regulates Promoters Carrying an Inverted Repeat Element. Molecular Plant-Microbe Interactions, 2010, 23, 927-939.	2.6	24
82	Plant Immunity Triggered by Microbial Molecular Signatures. Molecular Plant, 2010, 3, 783-793.	8.3	298
83	Pseudomonas syringae Effector Protein AvrB Perturbs Arabidopsis Hormone Signaling by Activating MAP Kinase 4. Cell Host and Microbe, 2010, 7, 164-175.	11.0	178
84	Receptor-like Cytoplasmic Kinases Integrate Signaling from Multiple Plant Immune Receptors and Are Targeted by a Pseudomonas syringae Effector. Cell Host and Microbe, 2010, 7, 290-301.	11.0	713
85	The multilevel and dynamic interplay between plant and pathogen. Plant Signaling and Behavior, 2009, 4, 283-293.	2.4	16
86	ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 Repress <i> SALICYLIC ACID INDUCTION DEFICIENT2 </i> Expression to Negatively Regulate Plant Innate Immunity in <i> Arabidopsis < /i > \hat{A} \hat{A}. Plant Cell, 2009, 21, 2527-2540.</i>	6.6	267
87	Plant immunity: a lesson from pathogenic bacterial effector proteins. Cellular Microbiology, 2009, 11, 1453-1461.	2.1	83
88	<i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> Mutants Compromised for Type III Secretion System Gene Induction. Molecular Plant-Microbe Interactions, 2009, 22, 964-976.	2.6	39
89	Structural basis for the catalytic mechanism of phosphothreonine lyase. Nature Structural and Molecular Biology, 2008, 15, 101-102.	8.2	36
90	Pseudomonas syringae Effector AvrPto Blocks Innate Immunity by Targeting Receptor Kinases. Current Biology, 2008, 18, 74-80.	3.9	429

#	Article	IF	Citations
91	Plant pathogenic bacterial type III effectors subdue host responses. Current Opinion in Microbiology, 2008, 11, 179-185.	5.1	171
92	Firefly Luciferase Complementation Imaging Assay for Protein-Protein Interactions in Plants. Plant Physiology, 2008, 146, 323-324.	4.8	989
93	Blocking and triggering of plant immunity by <i>Pseudomonas syringae</i> effector AvrPto. Plant Signaling and Behavior, 2008, 3, 583-585.	2.4	13
94	The Phosphothreonine Lyase Activity of a Bacterial Type III Effector Family. Science, 2007, 315, 1000-1003.	12.6	378
95	Mutation of Lon Protease Differentially Affects the Expression of Pseudomonas syringae Type III Secretion System Genes in Rich and Minimal Media and Reduces Pathogenicity. Molecular Plant-Microbe Interactions, 2007, 20, 682-696.	2.6	39
96	Two-Component Sensor RhpS Promotes Induction of Pseudomonas syringae Type III Secretion System by Repressing Negative Regulator RhpR. Molecular Plant-Microbe Interactions, 2007, 20, 223-234.	2.6	38
97	A Pseudomonas syringae Effector Inactivates MAPKs to Suppress PAMP-Induced Immunity in Plants. Cell Host and Microbe, 2007, 1, 175-185.	11.0	585
98	The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature, 2007, 449, 243-247.	27.8	162
99	Regulation of the Type III Secretion System in Phytopathogenic Bacteria. Molecular Plant-Microbe Interactions, 2006, 19, 1159-1166.	2.6	187
100	The Pseudomonas syringae pv. tomatoDC3000 Type III Effector HopF2 Has a Putative Myristoylation Site Required for Its Avirulence and Virulence Functions. Molecular Plant-Microbe Interactions, 2006, 19, 130-138.	2.6	55
101	Genome-Wide Gene Expression Analysis of Pseudomonas syringae pv. tomato DC3000 Reveals Overlapping and Distinct Pathways Regulated by hrpL and hrpRS. Molecular Plant-Microbe Interactions, 2006, 19, 976-987.	2.6	58
102	RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19200-19205.	7.1	111
103	Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12990-12995.	7.1	248
104	Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syring aetype III effectors and coronatine. Plant Journal, 2004, 37, 589-602.	5.7	136
105	Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO Journal, 2004, 23, 2903-2913.	7.8	269
106	The HopPtoF Locus of Pseudomonas syringae pv. tomato DC3000 Encodes a Type III Chaperone and a Cognate Effector. Molecular Plant-Microbe Interactions, 2004, 17, 447-455.	2.6	38
107	Tobacco Genes Induced by the Bacterial Effector Protein AvrPto. Molecular Plant-Microbe Interactions, 2004, 17, 1139-1145.	2.6	14
108	Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology, 2003, 52, 401-414.	3.9	171

#	Article	IF	CITATIONS
109	In planta induced genes of Puccinia triticina. Molecular Plant Pathology, 2003, 4, 51-56.	4.2	75
110	Pto Mutants Differentially ActivatePrf-Dependent, avrPto-Independent Resistance and Gene-for-Gene Resistance. Plant Physiology, 2003, 131, 1239-1249.	4.8	15
111	Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3519-3524.	7.1	146
112	Overexpression of Pto Induces a Salicylate-Independent Cell Death But Inhibits Necrotic Lesions Caused by Salicylate-Deficiency in Tomato Plants. Molecular Plant-Microbe Interactions, 2002, 15, 654-661.	2.6	18
113	Overexpression of Pti5 in Tomato Potentiates Pathogen-Induced Defense Gene Expression and Enhances Disease Resistance to Pseudomonas syringae pv. tomato. Molecular Plant-Microbe Interactions, 2001, 14, 1453-1457.	2.6	93
114	Arabidopsis NHO1 Is Required for General Resistance against Pseudomonas Bacteria. Plant Cell, 2001, 13, 437-447.	6.6	128
115	Arabidopsis NHO1 Is Required for General Resistance against Pseudomonas Bacteria. Plant Cell, 2001, 13, 437.	6.6	18
116	Expression of 35S::Pto Globally Activates Defense-Related Genes in Tomato Plants. Plant Physiology, 2001, 126, 1637-1645.	4.8	48
117	A Cluster of Mutations Disrupt the Avirulence but Not the Virulence Function of AvrPto. Molecular Plant-Microbe Interactions, 2000, 13, 592-598.	2.6	109
118	The Pseudomonas AvrPto Protein Is Differentially Recognized by Tomato and Tobacco and Is Localized to the Plant Plasma Membrane. Plant Cell, 2000, 12, 2323.	6.6	1
119	The Pseudomonas AvrPto Protein Is Differentially Recognized by Tomato and Tobacco and Is Localized to the Plant Plasma Membrane. Plant Cell, 2000, 12, 2323-2337.	6.6	163
120	Pti4 Is Induced by Ethylene and Salicylic Acid, and Its Product Is Phosphorylated by the Pto Kinase. Plant Cell, 2000, 12, 771-785.	6.6	274
121	Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate. Plant Journal, 1999, 20, 475-483.	5.7	94
122	Pathogen recognition and signal transduction by the Pto kinase. Journal of Plant Research, 1998, 111, 353-356.	2.4	16
123	A Nitrilase-Like Protein Interacts with GCC Box DNA-Binding Proteins Involved in Ethylene and Defense Responses. Plant Physiology, 1998, 118, 867-874.	4.8	50
124	The Myristylation Motif of Pto Is Not Required for Disease Resistance. Molecular Plant-Microbe Interactions, 1998, 11, 572-576.	2.6	38
125	Purification and Immunological Identification of Metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology, 1997, 113, 1293-1301.	4.8	168
126	The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO Journal, 1997, 16, 3207-3218.	7.8	427

#	Article	IF	CITATIONS
127	Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science, 1996, 274, 2060-2063.	12.6	630
128	Structure, organization and expression of the metallothionein gene family inArabidopsis. Molecular Genetics and Genomics, 1995, 248, 318-328.	2.4	192
129	The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell, 1995, 83, 925-935.	28.9	383