Ya-Ping Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7151128/publications.pdf

Version: 2024-02-01

		22132	24232
176	13,403	59	110
papers	citations	h-index	g-index
188	188	188	17859
100	100	100	17033
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of Few‣ayer MoS ₂ Nanosheetâ€Coated TiO ₂ Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small, 2013, 9, 140-147.	5.2	1,166
2	Surface strategies for catalytic CO ₂ reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews, 2019, 48, 5310-5349.	18.7	607
3	Near-Infrared Photoluminescent Ag ₂ 5 Quantum Dots from a Single Source Precursor. Journal of the American Chemical Society, 2010, 132, 1470-1471.	6.6	577
4	One-pot synthesis of CoFe ₂ O ₄ /graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. Journal of Materials Chemistry A, 2015, 3, 5535-5546.	5.2	494
5	Electrochemically Reduced Single‣ayer MoS ₂ Nanosheets: Characterization, Properties, and Sensing Applications. Small, 2012, 8, 2264-2270.	5.2	373
6	A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nature Communications, 2012, 3, 1177.	5.8	368
7	pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. Journal of Colloid and Interface Science, 2019, 536, 224-234.	5.0	334
8	Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10, 11775-11781.	2.8	274
9	A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Materials Horizons, 2018, 5, 1143-1150.	6.4	232
10	Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Advanced Materials, 2019, 31, e1805833.	11.1	223
11	Efficient Energy Transfer in Monodisperse Eu-Doped ZnO Nanocrystals Synthesized from Metal Acetylacetonates in High-Boiling Solvents. Journal of Physical Chemistry C, 2008, 112, 12234-12241.	1.5	212
12	Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chemical Society Reviews, 2020, 49, 1109-1143.	18.7	211
13	Two-Dimensional Flexible Bilayer Janus Membrane for Advanced Photothermal Water Desalination. ACS Energy Letters, 2018, 3, 1165-1171.	8.8	203
14	From Trifluoroacetate Complex Precursors to Monodisperse Rare-Earth Fluoride and Oxyfluoride Nanocrystals with Diverse Shapes through Controlled Fluorination in Solution Phase. Chemistry - A European Journal, 2007, 13, 2320-2332.	1.7	189
15	Multimodal Luminescent Yb ³⁺ /Er ³⁺ /Bi ³⁺ â€Doped Perovskite Single Crystals for Xâ€ray Detection and Antiâ€Counterfeiting. Advanced Materials, 2020, 32, e2004506.	11.1	187
16	A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale, 2013, 5, 1456.	2.8	177
17	Ultrathin Visibleâ€Lightâ€Driven Mo Incorporating In ₂ O ₃ â€"ZnIn ₂ Se ₄ Zâ€Scheme Nanosheet Photocatalysts. Advanced Materials, 2019, 31, e1807226.	11.1	165
18	Fabrication of MoS ₂ nanosheet@TiO ₂ nanotube hybrid nanostructures for lithium storage. Nanoscale, 2014, 6, 5245-5250.	2.8	158

#	Article	IF	CITATIONS
19	Matchstickâ€Shaped Ag ₂ S–ZnS Heteronanostructures Preserving both UV/Blue and Nearâ€Infrared Photoluminescence. Angewandte Chemie - International Edition, 2011, 50, 7115-7118.	7.2	153
20	Tungstenâ€Doped L1 ₀ â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.	7.2	150
21	MOF-derived porous Ni ₂ P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 18720-18727.	5.2	149
22	Regulating the active species of Ni(OH) ₂ using CeO ₂ : 3D CeO ₂ /Ni(OH) ₂ /carbon foam as an efficient electrode for the oxygen evolution reaction. Chemical Science, 2017, 8, 3211-3217.	3.7	141
23	Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials, 2019, 62, 1727-1739.	3.5	137
24	Electrochromic Poly(chalcogenoviologen)s as Anode Materials for Highâ€Performance Organic Radical Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 8468-8473.	7.2	134
25	Full Solutionâ€Processed Synthesis of All Metal Oxideâ€Based Treeâ€like Heterostructures on Fluorineâ€Doped Tin Oxide for Water Splitting. Advanced Materials, 2012, 24, 5374-5378.	11.1	131
26	Luminescent Monodisperse Nanocrystals of Lanthanide Oxyfluorides Synthesized from Trifluoroacetate Precursors in High-Boiling Solvents. Journal of Physical Chemistry C, 2008, 112, 405-415.	1.5	130
27	Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22, 23439.	6.7	126
28	Rare earth incorporated electrode materials for advanced energy storage. Coordination Chemistry Reviews, 2019, 390, 32-49.	9.5	126
29	Colloidal synthesis of 1T' phase dominated WS2 towards endurable electrocatalysis. Nano Energy, 2018, 50, 176-181.	8.2	123
30	Efficient Optimization of Electron/Oxygen Pathway by Constructing Ceria/Hydroxide Interface for Highly Active Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1908367.	7.8	120
31	Highly Luminescent Self-Organized Sub-2-nm EuOF Nanowires. Journal of the American Chemical Society, 2009, 131, 16364-16365.	6.6	119
32	Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors. Dalton Transactions, 2009, , 8574.	1.6	113
33	Self-Assembled Peptide–Lanthanide Nanoclusters for Safe Tumor Therapy: Overcoming and Utilizing Biological Barriers to Peptide Drug Delivery. ACS Nano, 2018, 12, 2017-2026.	7.3	110
34	Oxygen Vacancies on Layered Niobic Acid That Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 11491-11496.	7.2	104
35	Phase Transformation Fabrication of a Cu ₂ S Nanoplate as an Efficient Catalyst for Water Oxidation with Glycine. Inorganic Chemistry, 2015, 54, 3281-3289.	1.9	102
36	A Smart Nanoplatform with Photothermal Antibacterial Capability and Antioxidant Activity for Chronic Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100033.	3.9	101

#	Article	IF	Citations
37	Tailoring the d-band center of N-doped carbon nanotube arrays with Co4N nanoparticles and single-atom Co for a superior hydrogen evolution reaction. NPG Asia Materials, 2021, 13, .	3.8	95
38	Colloidally synthesized MoSe ₂ /graphene hybrid nanostructures as efficient electrocatalysts for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 19706-19710.	5.2	92
39	MoSe ₂ nanosheets grown on carbon cloth with superior electrochemical performance as flexible electrode for sodium ion batteries. RSC Advances, 2016, 6, 1440-1444.	1.7	92
40	Ultrathin 2D Rareâ€Earth Nanomaterials: Compositions, Syntheses, and Applications. Advanced Materials, 2020, 32, e1806461.	11.1	92
41	Organic Thiocarboxylate Electrodes for a Roomâ€Temperature Sodiumâ€Ion Battery Delivering an Ultrahigh Capacity. Angewandte Chemie - International Edition, 2017, 56, 15334-15338.	7.2	91
42	Atomically Efficient Synthesis of Self-assembled Monodisperse and Ultrathin Lanthanide Oxychloride Nanoplates. Journal of the American Chemical Society, 2009, 131, 3162-3163.	6.6	86
43	Rareâ€Earth Incorporated Alloy Catalysts: Synthesis, Properties, and Applications. Advanced Materials, 2021, 33, e2005988.	11.1	84
44	Uniform Alkaline Earth Fluoride Nanocrystals with Diverse Shapes Grown from Thermolysis of Metal Trifluoroacetates in Hot Surfactant Solutions. Crystal Growth and Design, 2009, 9, 2013-2019.	1.4	83
45	Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. Journal of Power Sources, 2015, 278, 574-581.	4.0	83
46	WO <i>_x</i> àê€urface Decorated PtNi@Pt Dendritic Nanowires as Efficient pHâ€Universal Hydrogen Evolution Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003192.	10.2	82
47	Tunable CO/H ₂ ratios of electrochemical reduction of CO ₂ through the Zn-Ln dual atomic catalysts. Science Advances, 2021, 7, eabl4915.	4.7	82
48	Symmetric full cells assembled by using self-supporting Na ₃ bipolar electrodes for superior sodium energy storage. Journal of Materials Chemistry A, 2016, 4, 7155-7159.	5,2	81
49	Generalized synthesis of metal sulfide nanocrystals from single-source precursors: size, shape and chemical composition control and their properties. CrystEngComm, 2011, 13, 4572.	1.3	80
50	A Reversibly Responsive Fluorochromic Hydrogel Based on Lanthanide–Mannose Complex. Advanced Science, 2019, 6, 1802112.	5.6	76
51	One-Dimensional Lead-Free Halide with Near-Unity Greenish-Yellow Light Emission. Chemistry of Materials, 2020, 32, 6525-6531.	3.2	7 3
52	Superior-Performance Aqueous Zinc Ion Battery Based on Structural Transformation of MnO ₂ by Rare Earth Doping. Journal of Physical Chemistry C, 2019, 123, 22735-22741.	1.5	70
53	Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation. Journal of Hazardous Materials, 2016, 317, 430-439.	6.5	69
54	Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes. Nano Letters, 2017, 17, 5726-5733.	4.5	67

#	Article	IF	CITATIONS
55	Synthesis of High-Quality \hat{l}_{\pm} -MnSe Nanostructures with Superior Lithium Storage Properties. Inorganic Chemistry, 2016, 55, 2765-2770.	1.9	66
56	Lanthanide doping induced electrochemical enhancement of Na ₂ Ti ₃ O ₇ anodes for sodium-ion batteries. Chemical Science, 2018, 9, 3421-3425.	3.7	66
57	Lanthanide electronic perturbation in Pt–Ln (La, Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity. Energy and Environmental Science, 2021, 14, 5911-5918.	15.6	65
58	Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nature Communications, 2019, 10, 1394.	5.8	64
59	Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach. CrystEngComm, 2010, 12, 3658.	1.3	62
60	Room temperature stable CO _{<i>x</i>} -free H ₂ production from methanol with magnesium oxide nanophotocatalysts. Science Advances, 2016, 2, e1501425.	4.7	62
61	Assembled 3D electrocatalysts for efficient hydrogen evolution: WSe ₂ layers anchored on graphene sheets. Inorganic Chemistry Frontiers, 2016, 3, 313-319.	3.0	61
62	When rare earth meets carbon nanodots: mechanisms, applications and outlook. Chemical Society Reviews, 2020, 49, 9220-9248.	18.7	61
63	Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery. Nano Energy, 2019, 62, 876-882.	8.2	60
64	A Review on Ceo ₂ â€Based Electrocatalyst and Photocatalyst in Energy Conversion. Advanced Energy and Sustainability Research, 2021, 2, 2000063.	2.8	60
65	Solid Nanoporosity Governs Catalytic CO ₂ and N ₂ Reduction. ACS Nano, 2020, 14, 7734-7759.	7.3	59
66	A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 2021, 8, nwab019.	4.6	59
67	2D Materials Based on Main Group Element Compounds: Phases, Synthesis, Characterization, and Applications. Advanced Functional Materials, 2020, 30, 2001127.	7.8	58
68	Single-Crystalline and Near-Monodispersed NaMF3 (M=Mn, Co, Ni, Mg) and LiMAlF6 (M=Ca, Sr) Nanocrystals from Cothermolysis of Multiple Trifluoroacetates in Solution. Chemistry - an Asian Journal, 2007, 2, 965-974.	1.7	57
69	Rare earth double perovskites: a fertile soil in the field of perovskite oxides. Inorganic Chemistry Frontiers, 2019, 6, 2226-2238.	3.0	57
70	Layered Double Hydroxide Hollowcages with Adjustable Layer Spacing for High Performance Hybrid Supercapacitor. Small, 2021, 17, e2104423.	5,2	57
71	Structuralâ€Phase Catalytic Redox Reactions in Energy and Environmental Applications. Advanced Materials, 2020, 32, e1905739.	11.1	56
72	Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation. Journal of Materials Chemistry C, 2020, 8, 14845-14854.	2.7	54

#	Article	IF	CITATIONS
73	Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries. Inorganic Chemistry, 2015, 54, 11799-11806.	1.9	52
74	Thermally Stable Hierarchical Nanostructures of Ultrathin MoS ₂ Nanosheet-Coated CeO ₂ Hollow Spheres as Catalyst for Ammonia Decomposition. Inorganic Chemistry, 2016, 55, 3992-3999.	1.9	52
75	Coreâ€"shell structured CeO ₂ @MoS ₂ nanocomposites for high performance symmetric supercapacitors. CrystEngComm, 2016, 18, 4158-4164.	1.3	51
76	Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application. Scientific Reports, 2017, 7, 43590.	1.6	51
77	Electrolytes for Batteries with Earthâ€Abundant Metal Anodes. Chemistry - A European Journal, 2018, 24, 18220-18234.	1.7	50
78	High quality sulfur-doped titanium dioxide nanocatalysts with visible light photocatalytic activity from non-hydrolytic thermolysis synthesis. Inorganic Chemistry Frontiers, 2014, 1, 521-525.	3.0	49
79	Biodegradable thermal imaging-tracked ultralong nanowire-reinforced conductive nanocomposites elastomers with intrinsical efficient antibacterial and anticancer activity for enhanced biomedical application potential. Biomaterials, 2019, 201, 68-76.	5.7	49
80	Rareâ€Earthâ€Based Metal–Organic Frameworks as Multifunctional Platforms for Catalytic Conversion. Small, 2021, 17, e2005371.	5.2	47
81	Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale, 2016, 8, 14432-14437.	2.8	45
82	Tumorâ€Microenvironmentâ€Induced Degradation of Ultrathin Gadolinium Oxide Nanoscrolls for Magneticâ€Resonanceâ€Imagingâ€Monitored, Activatable Cancer Chemotherapy. Angewandte Chemie - International Edition, 2019, 58, 6880-6885.	7.2	44
83	Synthesis of MoX2 (X = Se or S) monolayers with high-concentration $1T\hat{a}\in^2$ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12, 1301-1305.	5.8	44
84	Multifunctional cerium doped carbon dots nanoplatform and its applications for wound healing. Chemical Engineering Journal, 2021, 423, 130301.	6.6	44
85	Construction of High-Quality SnO ₂ @MoS ₂ Nanohybrids for Promising Photoelectrocatalytic Applications. Inorganic Chemistry, 2017, 56, 3386-3393.	1.9	42
86	Multiresponsive Supramolecular Luminescent Hydrogels Based on a Nucleoside/Lanthanide Complex. ACS Applied Materials & Distribution (2019), 11, 47404-47412.	4.0	42
87	High-quality Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals hybrid with ZnO and NaYF4: Yb, Tm as efficient photocatalytic sensitizers. Applied Catalysis B: Environmental, 2017, 200, 402-411.	10.8	41
88	Fast Li-ion Conductor of Li ₃ HoBr ₆ for Stable All-Solid-State Lithium–Sulfur Battery. Nano Letters, 2021, 21, 9325-9331.	4.5	41
89	Complete CO Oxidation by O ₂ and H ₂ O over Pt–CeO _{2â^î^(} /MgO Following Langmuir–Hinshelwood and Mars–van Krevelen Mechanisms, Respectively. ACS Catalysis, 2021, 11, 11820-11830.	5.5	40
90	Identification of Singlet Self-Trapped Excitons in a New Family of White-Light-Emitting Zero-Dimensional Compounds. Journal of Physical Chemistry C, 2020, 124, 11625-11630.	1.5	39

#	Article	IF	Citations
91	Understanding MXene-Based "Symmetric―Supercapacitors and Redox Electrolyte Energy Storage. ACS Applied Energy Materials, 2020, 3, 5006-5014.	2.5	38
92	Multifunctional nanocomposites constructed from Fe3O4–Au nanoparticle cores and a porous silica shell in the solution phase. Dalton Transactions, 2011, 40, 10857.	1.6	36
93	Epoxy containing solid polymer electrolyte for lithium ion battery. Electrochimica Acta, 2019, 318, 302-313.	2.6	35
94	Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction. Nano Research, 2016, 9, 3795-3811.	5.8	34
95	When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst. Ceramics International, 2020, 46, 4248-4255.	2.3	34
96	Recent advances on rare earths in solid lithium ion conductors. Journal of Rare Earths, 2021, 39, 1-10.	2.5	34
97	Synthesis of Porous Amorphous FePO ₄ Nanotubes and Their Lithium Storage Properties. Chemistry - A European Journal, 2013, 19, 1568-1572.	1.7	33
98	Constructing monodispersed MoSe2 anchored on graphene: a superior nanomaterial for sodium storage. Science China Materials, 2017, 60, 167-177.	3.5	33
99	Controlled Synthesis and Properties of Rare Earth Nanomaterials. Fundamental Theories of Physics, 2011, 41, 275-472.	0.1	32
100	Rareâ€Earthâ€Based Perovskite Cs ₂ AgScCl ₆ :Bi for Strong Full Visible Spectrum Emission. Advanced Functional Materials, 2022, 32, .	7.8	32
101	Multimodal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework. National Science Review, 2021, 8, nwaa221.	4.6	31
102	Organic Thiocarboxylate Electrodes for a Roomâ€Temperature Sodiumâ€Ion Battery Delivering an Ultrahigh Capacity. Angewandte Chemie, 2017, 129, 15536-15540.	1.6	31
103	Construction of pH-responsive and up-conversion luminescent NaYF4:Yb3+/Er3+@SiO2@PMAA nanocomposite for colon targeted drug delivery. Scientific Reports, 2016, 6, 21335.	1.6	30
104	Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie, 2019, 131, 15617-15623.	1.6	30
105	Free-standing 2D nanorafts by assembly of 1D nanorods for biomolecule sensing. Nanoscale, 2019, 11, 12169-12176.	2.8	30
106	Construction of high quality ultrathin lanthanide oxyiodide nanosheets for enhanced CT imaging and anticancer drug delivery to efficient cancer theranostics. Biomaterials, 2020, 230, 119670.	5.7	30
107	Synthesis of Porous, Hollow Metal MCO ₃ (M=Mn, Co, Ca) Microstructures and Adsorption Properties Thereof. Chemistry - A European Journal, 2014, 20, 421-425.	1.7	29
108	Simultaneously targeted imaging cytoplasm and nucleus in living cell by biomolecules capped ultra-small GdOF nanocrystals. Biomaterials, 2015, 59, 21-29.	5.7	29

#	Article	IF	CITATIONS
109	Photoactivity and Stability Coâ€Enhancement: When Localized Plasmons Meet Oxygen Vacancies in MgO. Small, 2018, 14, e1803233.	5.2	28
110	High-quality ultralong copper sulphide nanowires for promising applications in high efficiency solar water evaporation. Materials Chemistry Frontiers, 2019, 3, 394-398.	3.2	28
111	Enhanced photocatalytic activity of perovskite NaNbO ₃ by oxygen vacancy engineering. Physical Chemistry Chemical Physics, 2019, 21, 11697-11704.	1.3	27
112	Ultrafine CoP/Co2P Nanorods Encapsulated in Janus/Twins-type Honeycomb 3D Nitrogen-Doped Carbon Nanosheets for Efficient Hydrogen Evolution. IScience, 2020, 23, 101264.	1.9	27
113	Bioactive Core–Shell CaF ₂ Upconversion Nanostructure for Promotion and Visualization of Engineered Bone Reconstruction. ACS Nano, 2020, 14, 16085-16095.	7.3	26
114	Rare earth element based single-atom catalysts: synthesis, characterization and applications in photo/electro-catalytic reactions. Nanoscale Horizons, 2021, 7, 31-40.	4.1	26
115	High quality Î ² -FeOOH nanostructures constructed by a biomolecule-assisted hydrothermal approach and their pH-responsive drug delivery behaviors. CrystEngComm, 2015, 17, 4064-4069.	1.3	25
116	The interfacial effect induced by rare earth oxide in boosting the conversion of CO ₂ to formate. Energy and Environmental Science, 2022, 15, 3494-3502.	15.6	25
117	Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35469-35476.	4.0	24
118	Gelatin assisted wet chemistry synthesis of high quality \hat{l}^2 -FeOOH nanorods anchored on graphene nanosheets with superior lithium-ion battery application. RSC Advances, 2016, 6, 17504-17509.	1.7	23
119	Facet Selectivity Guided Assembly of Nanoarchitectures onto Twoâ€Dimensional Metal–Organic Framework Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 17564-17569.	7.2	23
120	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	11.1	23
121	Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coordination Chemistry Reviews, 2022, 450, 214236.	9.5	23
122	Electrochromic Poly(chalcogenoviologen)s as Anode Materials for Highâ€Performance Organic Radical Lithiumâ€Ion Batteries. Angewandte Chemie, 2019, 131, 8556-8561.	1.6	22
123	All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy. Nano Research, 2019, 12, 593-599.	5.8	22
124	Gramâ€Scale Synthesis of Nanosized Li ₃ HoBr ₆ Solid Electrolyte for Allâ€Solidâ€State Liâ€Se Battery. Small Methods, 2021, 5, e2101002.	4.6	22
125	A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium–sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 1317-1322.	3.2	21
126	Phosphineâ€Free, Lowâ€Temperature Synthesis of Tetrapodâ€Shaped CdS and Its Hybrid with Au Nanoparticles. Small, 2014, 10, 4727-4734.	5.2	20

#	Article	IF	CITATIONS
127	Periodic AuAgâ€Ag ₂ S Heterostructured Nanowires. Small, 2014, 10, 479-482.	5.2	20
128	Highâ€Quality Copper Sulfide Nanocrystals with Diverse Shapes and Their Catalysis for Electrochemical Reduction of H ₂ O ₂ . Particle and Particle Systems Characterization, 2015, 32, 536-541.	1.2	20
129	Synthesis of high-quality lanthanide oxybromides nanocrystals with single-source precursor for promising applications in cancer cells imaging. Applied Materials Today, 2015, 1, 20-26.	2.3	20
130	Ultrathin lanthanide oxides nanomaterials: synthesis, properties and applications. Science Bulletin, 2016, 61, 1422-1434.	4.3	20
131	Study of a composite solid electrolyte made from a new pyrrolidone-containing polymer and LLZTO. Journal of Colloid and Interface Science, 2020, 580, 389-398.	5.0	20
132	Rareâ€earthâ€incorporated lowâ€dimensional chalcogenides: Dryâ€method syntheses and applications. InformaÄnÃ-Materiály, 2020, 2, 466-482.	8.5	20
133	Synthesis of high quality CuO nanoflakes and CuO–Au nanohybrids for superior visible light photocatalytic behavior. RSC Advances, 2016, 6, 81607-81613.	1.7	19
134	Controlled Synthesis of Ultrathin Lanthanide Oxide Nanosheets and Their Promising pHâ€Controlled Anticancer Drug Delivery. Chemistry - A European Journal, 2015, 21, 11954-11960.	1.7	18
135	Modulation of Surface Energy Transfer Cascade for Reversible Photoluminescence pH Sensing. Chemistry of Materials, 2019, 31, 8121-8128.	3.2	17
136	Self-Assembled Ferromagnetic Monodisperse Manganese Oxide Nanoplates Synthesized by a Modified Nonhydrolytic Approach. Journal of Physical Chemistry C, 2009, 113, 6521-6528.	1.5	15
137	Lattice distortion and its role in the magnetic behavior of the Mn-doped ZnO system. New Journal of Physics, 2012, 14, 013033.	1.2	15
138	Well-defined Co _x CeO _{2+x} â€"MoS ₂ nanotube hybrids as novel electrocatalysts for promising hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 9523-9527.	5.2	15
139	Ligand induced structure and property changes of 1T-MoS2. Physical Chemistry Chemical Physics, 2019, 21, 9391-9398.	1.3	15
140	Organic–Rare Earth Hybrid Anode with Superior Cyclability for Lithium Ion Battery. Advanced Materials Interfaces, 2020, 7, 1902168.	1.9	15
141	Synthesis of porous gadolinium oxide nanosheets for cancer therapy and magnetic resonance imaging. Materials Letters, 2020, 265, 127375.	1.3	15
142	Non-equilibrium insertion of lithium ions into graphite. Journal of Materials Chemistry A, 2021, 9, 12080-12086.	5.2	15
143	Carbon Thin Film Wrapped around a Threeâ€Dimensional Nitrogenâ€Doped Carbon Scaffold for Superiorâ€Performance Supercapacitors. Chemistry - A European Journal, 2017, 23, 9641-9646.	1.7	13
144	Oxygen Vacancies on Layered Niobic Acid That Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 11615-11620.	1.6	13

#	Article	IF	Citations
145	Upconversion Lifetime Imaging of Highlyâ€Crystalline Gdâ€Based Fluoride Nanocrystals Featuring Strong Luminescence Resulting from Multiple Luminescent Centers. Advanced Optical Materials, 2020, 8, 1901495.	3.6	13
146	Recent advances on visible-light-driven CO2 reduction: Strategies for boosting solar energy transformation. APL Materials, 2020, 8, .	2.2	13
147	Cerium-doped bimetal organic framework as a superhigh capacity cathode for rechargeable alkaline batteries. Nanoscale, 2021, 13, 3581-3587.	2.8	13
148	Imidazole containing solid polymer electrolyte for lithium ion conduction and the effects of two lithium salts. Electrochimica Acta, 2020, 351, 136342.	2.6	12
149	EuS–CdS and EuS–ZnS heterostructured nanocrystals constructed by Co-thermal decomposition of molecular precursors in the solution phase. Journal of Materials Chemistry C, 2015, 3, 3902-3907.	2.7	11
150	Enhancing the Rate Capability of Niobium Oxide Electrode through Rareâ€Earth Doping Engineering. Batteries and Supercaps, 2019, 2, 924-928.	2.4	11
151	Study of solid polyurethane electrolytes synthesized from HDI and PEO of different molecular weight. Journal of Electroanalytical Chemistry, 2021, 893, 115305.	1.9	11
152	Evidence of Matrix Lattice Distortion in Zn1â^'xCoxO Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 4263-4269.	1.5	10
153	Thiocarboxylate-modified Ni(OH)2 nanosheets for high-performance alkaline batteries. Journal of Materials Chemistry A, 2019, 7, 20176-20181.	5.2	10
154	Tumorâ€Microenvironmentâ€Induced Degradation of Ultrathin Gadolinium Oxide Nanoscrolls for Magneticâ€Resonanceâ€Imagingâ€Monitored, Activatable Cancer Chemotherapy. Angewandte Chemie, 2019, 131, 6954-6959.	1.6	10
155	Crystalline/Amorphous Heterophase with Self-Assembled Hollow Structure for Highly Efficient Electrochemical Hydrogen Production. CCS Chemistry, 2022, 4, 3391-3401.	4.6	10
156	High Quality Ultrathin Lanthanide Selenide Nanostructures with Dual Modal Functionalities. Chemistry of Materials, 2016, 28, 2507-2510.	3.2	9
157	Facile Preparation of Methyl Phenols from Ethanol over Lamellar Ce(OH)SO ₄ Â <i>x</i> H ₂ O. ACS Catalysis, 2021, 11, 6162-6174.	5 . 5	9
158	High-Performance Supercapacitors Based on Nitrogen-Doped Porous Carbon from Surplus Sludge. Science of Advanced Materials, 2015, 7, 571-578.	0.1	9
159	Advances in solid lithium ion electrolyte based on the composites of polymer and <scp>LLTO</scp> / <scp>LLZO</scp> of rare earth oxides. Engineering Reports, 2022, 4, e12448.	0.9	8
160	Near room-temperature ferromagnetism in air-stable two-dimensional Cr1â^'xTe grown by chemical vapor deposition. Nano Research, 2022, 15, 3763-3769.	5.8	8
161	In-depth study on the structures and properties of rare-earth-containing perovskite materials. Nanoscale, 2021, 13, 13976-13994.	2.8	7
162	Multiâ€Elemental Electronic Coupling for Enhanced Hydrogen Generation. Small, 2021, 17, e2006617.	5.2	6

#	Article	IF	CITATIONS
163	Uniform ZnO nanorods derived from lithium ions as a growth controlling agent in non-aqueous medium. CrystEngComm, 2011, 13, 437-439.	1.3	5
164	Controlled synthesis of high quality scandium-based nanocrystals as promising recyclable catalysts for silylcyanation reaction. Nanoscale, 2017, 9, 10987-10991.	2.8	5
165	Facet Selectivity Guided Assembly of Nanoarchitectures onto Twoâ€Dimensional Metal–Organic Framework Nanosheets. Angewandte Chemie, 2021, 133, 17705-17710.	1.6	5
166	Highly Stable 3D Supercuboids to 2D ZnSe Nanosheets: Formation for a High-Efficiency Catalysis System. Journal of Physical Chemistry Letters, 2022, 13, 1855-1862.	2.1	5
167	Novel Ceriumâ€Based Sulfide Nanoâ€Photocatalyst for Highly Efficient CO ₂ Reduction. Small, 2022, 18, e2201332.	5.2	5
168	Unravelling the Mystery of Solid Solutions: A Case Study of ⁸⁹ Y Solidâ€5tate NMR Spectroscopy. ChemPhysChem, 2020, 21, 825-836.	1.0	4
169	Research progress on space charge layer effect in lithium-ion solid-state battery. Science China Technological Sciences, 2022, 65, 2246-2258.	2.0	4
170	General synthesis of large-area flexible bi-atomic subnano thin lanthanide oxide nanoscrolls. Nano Energy, 2020, 78, 105318.	8.2	2
171	Biodegradable biocompatible MgO/Eu nanodrug with Acid-Base conversion capacity for targeted lung cancer therapy. Chemical Engineering Journal, 2022, 446, 136323.	6.6	2
172	CdS: Phosphineâ€Free, Lowâ€Temperature Synthesis of Tetrapodâ€Shaped CdS and Its Hybrid with Au Nanoparticles (Small 22/2014). Small, 2014, 10, 4726-4726.	5.2	1
173	Lithiumâ€kon Batteries: Organic–Rare Earth Hybrid Anode with Superior Cyclability for Lithium Ion Battery (Adv. Mater. Interfaces 9/2020). Advanced Materials Interfaces, 2020, 7, 2070051.	1.9	1
174	Oxygen Vacancies on Layered Niobic Acid that Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 11245.	1.6	0
175	Frontispiece: Tumorâ€Microenvironmentâ€Induced Degradation of Ultrathin Gadolinium Oxide Nanoscrolls for Magneticâ€Resonanceâ€Imagingâ€Monitored, Activatable Cancer Chemotherapy. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
176	Frontispiz: Tumorâ€Microenvironmentâ€Induced Degradation of Ultrathin Gadolinium Oxide Nanoscrolls for Magneticâ€Resonanceâ€Imagingâ€Monitored, Activatable Cancer Chemotherapy. Angewandte Chemie, 2019, 131, .	1.6	0