David A Sinclair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7150744/publications.pdf

Version: 2024-02-01

204 papers 61,314 citations

95 h-index 2828

218 all docs

218 docs citations

times ranked

218

54015 citing authors

g-index

#	Article	IF	Citations
1	Reduced Levels of NAD in Skeletal Muscle and Increased Physiologic Frailty Are Associated With Viral Coinfection in Asymptomatic Middle-Aged Adults. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 89, S15-S22.	2.1	6
2	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
3	Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nature Reviews Endocrinology, 2022, 18, 243-258.	9.6	225
4	NAD+ in COVID-19 and viral infections. Trends in Immunology, 2022, 43, 283-295.	6.8	28
5	Applying the AFRAID and FRIGHT clocks to novel preclinical mouse models of polypharmacy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, , .	3.6	1
6	Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice. Biochemical and Biophysical Research Communications, 2022, 607, 131-137.	2.1	4
7	Sirtuin 5 levels are limiting in preserving cardiac function and suppressing fibrosis in response to pressure overload. Scientific Reports, 2022, 12, .	3.3	6
8	Measuring PGC-1 \hat{l}_{\pm} and Its Acetylation Status in Mouse Primary Myotubes. Methods in Molecular Biology, 2021, 2310, 301-309.	0.9	2
9	Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymerâ€based precipitation and size exclusion chromatography. Journal of Extracellular Vesicles, 2021, 10, e12087.	12.2	55
10	The economic value of targeting aging. Nature Aging, 2021, 1, 616-623.	11.6	85
11	Gut Microbiota Predicts Healthy Late-Life Aging in Male Mice. Nutrients, 2021, 13, 3290.	4.1	10
12	The 2021 FASEB science research conference on NAD metabolism and signaling. Aging, 2021, 13, 24924-24930.	3.1	1
13	Dynamic stem cell selection safeguards the genomic integrity of the epidermis. Developmental Cell, 2021, 56, 3309-3320.e5.	7.0	15
14	Reprogramming to recover youthful epigenetic information and restore vision. Nature, 2020, 588, 124-129.	27.8	424
15	The Soluble Adenylyl Cyclase Inhibitor LRE1 Prevents Hepatic Ischemia/Reperfusion Damage Through Improvement of Mitochondrial Function. International Journal of Molecular Sciences, 2020, 21, 4896.	4.1	2
16	Plant-Based Diets and Longevity. Alternative and Complementary Therapies, 2020, 26, 153-154.	0.1	0
17	Age and life expectancy clocks based on machine learning analysis of mouse frailty. Nature Communications, 2020, 11, 4618.	12.8	75
18	Combining a High Dose of Metformin With the SIRT1 Activator, SRT1720, Reduces Life Span in Aged Mice Fed a High-Fat Diet. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 2037-2041.	3.6	15

#	Article	IF	CITATIONS
19	Can artificial intelligence identify effective <scp>COVID</scp> â€19 therapies?. EMBO Molecular Medicine, 2020, 12, e12817.	6.9	16
20	NAD+ Repletion Rescues Female Fertility during Reproductive Aging. Cell Reports, 2020, 30, 1670-1681.e7.	6.4	169
21	Administration of Nicotinamide Mononucleotide (NMN) Reduces Metabolic Impairment in Male Mouse Offspring from Obese Mothers. Cells, 2020, 9, 791.	4.1	21
22	Extracellular Vesicles for the Treatment of Radiation-Induced Normal Tissue Toxicity in the Lung. Frontiers in Oncology, 2020, 10, 602763.	2.8	7
23	Biomarkers of biological age as predictors of COVID-19 disease severity. Aging, 2020, 12, 6490-6491.	3.1	48
24	Why does COVID-19 disproportionately affect older people?. Aging, 2020, 12, 9959-9981.	3.1	708
25	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	3.1	32
26	NMN Rescues Endothelial Function and Neurovascular Coupling, Improving Cognitive Function in Aged Mice. Innovation in Aging, 2020, 4, 121-121.	0.1	1
27	Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. Aging, 2020, 12, 24504-24521.	3.1	26
28	Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction, 2019, 158, 171-181.	2.6	17
29	Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Radical Biology and Medicine, 2019, 141, 483-491.	2.9	115
30	Voluntary exercise normalizes the proteomic landscape in muscle and brain and improves the phenotype of progeroid mice. Aging Cell, 2019, 18, e13029.	6.7	25
31	Sirtuin Activators. , 2019, , 210-210.		0
32	Harvard HIV and Aging Workshop: Perspectives and Priorities from Claude D. Pepper Centers and Centers for AIDS Research. AIDS Research and Human Retroviruses, 2019, 35, 999-1012.	1.1	12
33	NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metabolism, 2019, 30, 630-655.	16.2	412
34	Molecular and Cellular Characterization of SIRT1 Allosteric Activators. Methods in Molecular Biology, 2019, 1983, 133-149.	0.9	10
35	Frailty biomarkers in humans and rodents: Current approaches and future advances. Mechanisms of Ageing and Development, 2019, 180, 117-128.	4.6	66
36	Epigenetic changes during aging and their reprogramming potential. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 61-83.	5.2	176

#	Article	IF	Citations
37	Multiple basal cell carcinomas in a patient with myotonic dystrophy type 1. BMJ Case Reports, 2019, 12, e227233.	0.5	3
38	Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biology, 2019, 24, 101192.	9.0	181
39	Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease. Cell Metabolism, 2019, 29, 1274-1290.e9.	16.2	106
40	Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. Nature Communications, 2019, 10, 5501.	12.8	40
41	Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nature Reviews Cardiology, 2019, 16, 33-55.	13.7	188
42	The elusive NMN transporter is found. Nature Metabolism, 2019, 1, 8-9.	11.9	9
43	Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell Metabolism, 2018, 27, 667-676.e4.	16.2	242
44	Therapeutic Potential of NAD-Boosting Molecules: The InÂVivo Evidence. Cell Metabolism, 2018, 27, 529-547.	16.2	565
45	Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. Aging Cell, 2018, 17, e12751.	6.7	35
46	Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. Metabolomics, 2018, 14, 15.	3.0	45
47	Sex differences in the response to dietary restriction in rodents. Current Opinion in Physiology, 2018, 6, 28-34.	1.8	59
48	Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell, 2018, 173, 74-89.e20.	28.9	333
49	Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell, 2018, 173, 117-129.e14.	28.9	229
50	Sirtuin activators and inhibitors: Promises, achievements, and challenges., 2018, 188, 140-154.		321
51	Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. Molecular Metabolism, 2018, 7, 1-11.	6.5	39
52	Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. Cell Reports, 2018, 25, 2234-2243.e6.	6.4	102
53	Longitudinal analysis of biomarker data from a personalized nutrition platform in healthy subjects. Scientific Reports, 2018, 8, 14685.	3.3	18
54	Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Molecular Cell, 2018, 71, 718-732.e9.	9.7	45

#	Article	IF	Citations
55	Sirtuins and NAD ⁺ in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circulation Research, 2018, 123, 868-885.	4.5	276
56	Pharmacological Approaches for Modulating Sirtuins. , 2018, , 71-81.		0
57	Assays for NAD+-Dependent Reactions and NAD+ Metabolites. Methods in Molecular Biology, 2018, 1813, 77-90.	0.9	5
58	Response to Wood re: "Oxidative Priority, Meal Frequency, and the Energy Economy of Food and Activity: Implications for Longevity, Obesity, and Cardiometabolic Disease― Metabolic Syndrome and Related Disorders, 2017, 15, 4-5.	1.3	O
59	SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death and Differentiation, 2017, 24, 343-356.	11.2	159
60	Resveratrol Improves Vascular Function and Mitochondrial Number but Not Glucose Metabolism in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1703-1709.	3.6	79
61	A conserved NAD ⁺ binding pocket that regulates protein-protein interactions during aging. Science, 2017, 355, 1312-1317.	12.6	140
62	Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Scientific Reports, 2017, 7, 15063.	3.3	59
63	Oxidative Priority, Meal Frequency, and the Energy Economy of Food and Activity: Implications for Longevity, Obesity, and Cardiometabolic Disease. Metabolic Syndrome and Related Disorders, 2017, 15, 6-17.	1.3	8
64	Head to Head Comparison of Short-Term Treatment with the NAD+ Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice. Frontiers in Pharmacology, 2016, 7, 258.	3.5	72
65	JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. Cell Reports, 2016, 16, 2641-2650.	6.4	104
66	NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metabolism, 2016, 24, 566-581.	16.2	420
67	Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology, 2016, 17, 679-690.	37.0	583
68	Sirtuin Activation by Small Molecules. , 2016, , 243-266.		3
69	Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Scientific Reports, 2016, 6, 23229.	3.3	65
70	Restoring stem cells — all you need is NAD+. Cell Research, 2016, 26, 971-972.	12.0	15
71	Why NAD + Declines during Aging: It's Destroyed. Cell Metabolism, 2016, 23, 965-966.	16.2	103
72	Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metabolism, 2016, 23, 1093-1112.	16.2	360

#	Article	lF	CITATIONS
73	C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins. Mechanisms of Ageing and Development, 2016, 154, 30-42.	4.6	76
74	Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability. Nucleic Acids Research, 2016, 44, e64-e64.	14.5	44
75	SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition. Journal of Biological Chemistry, 2016, 291, 2119-2135.	3.4	33
76	When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development (Cambridge), 2016, 143, 3-14.	2.5	267
77	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510.	6.7	481
78	The Sirt1 activator SRT3025 provides atheroprotection in Apoeâ $^{\circ}$ /â $^{\circ}$ mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. European Heart Journal, 2015, 36, 51-59.	2.2	117
79	The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice. Stem Cell Research, 2015, 15, 130-140.	0.7	21
80	Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. European Heart Journal, 2015, 36, 3404-3412.	2.2	354
81	Oogonial stem cells as a model to study age-associated infertility in women. Reproduction, Fertility and Development, 2015, 27, 969.	0.4	13
82	Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nature Communications, 2015, 6, 6263.	12.8	222
83	Measuring PGC-1α and Its Acetylation Status in Mouse Primary Myotubes. Methods in Molecular Biology, 2015, 1241, 49-57.	0.9	2
84	Nicotinamide Impairs Entry into and Exit from Meiosis I in Mouse Oocytes. PLoS ONE, 2015, 10, e0126194.	2.5	17
85	Effects of High Fat Diet Induced Obesity on Mitochondrial Biogenesis and Function – Impact of Exercise or Nicotinamide Mononucleotide (NMN). FASEB Journal, 2015, 29, 777.8.	0.5	0
86	Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. Haematologica, 2014, 99, 267-275.	3. 5	89
87	The SIRT1 Activator SRT1720 Extends Lifespan and Improves Health of Mice Fed a Standard Diet. Cell Reports, 2014, 6, 836-843.	6.4	342
88	The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metabolism, 2014, 19, 418-430.	16.2	768
89	GLTSCR2/PICT1 links mitochondrial stress and Myc signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3781-3786.	7.1	15
90	<scp>SIRT</scp> 2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO Journal, 2014, 33, 1438-1453.	7.8	195

#	Article	IF	Citations
91	<scp>SIRT</scp> 2 controls the pentose phosphate switch. EMBO Journal, 2014, 33, 1287-1288.	7.8	12
92	Small-Molecule Allosteric Activators of Sirtuins. Annual Review of Pharmacology and Toxicology, 2014, 54, 363-380.	9.4	199
93	Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences, 2014, 35, 146-154.	8.7	485
94	Geroncogenesis: Metabolic Changes during Aging as a Driver of Tumorigenesis. Cancer Cell, 2014, 25, 12-19.	16.8	52
95	Dietary restriction involves NAD + â€dependent mechanisms and a shift toward oxidative metabolism. Aging Cell, 2014, 13, 1075-1085.	6.7	81
96	The "Metabolic Winter―Hypothesis: A Cause of the Current Epidemics of Obesity and Cardiometabolic Disease. Metabolic Syndrome and Related Disorders, 2014, 12, 355-361.	1.3	22
97	<scp>SRT</scp> 2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell, 2014, 13, 787-796.	6.7	208
98	Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells. Stem Cell Reports, 2014, 3, 44-59.	4.8	135
99	Sirtuin1 Over-Expression Does Not Impact Retinal Vascular and Neuronal Degeneration in a Mouse Model of Oxygen-Induced Retinopathy. PLoS ONE, 2014, 9, e85031.	2.5	18
100	Metformin improves healthspan and lifespan in mice. Nature Communications, 2013, 4, 2192.	12.8	1,118
101	Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell, 2013, 155, 1624-1638.	28.9	1,134
102	Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nature Chemical Biology, 2013, 9, 693-700.	8.0	203
103	Evaluation of Resveratrol, Green Tea Extract, Curcumin, Oxaloacetic Acid, and Medium-Chain Triglyceride Oil on Life Span of Genetically Heterogeneous Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 6-16.	3.6	182
104	Identification of a SIRT1 Mutation in a Family with Type 1 Diabetes. Cell Metabolism, 2013, 17, 448-455.	16.2	103
105	Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators. Science, 2013, 339, 1216-1219.	12.6	538
106	Flavonoid Apigenin Is an Inhibitor of the NAD+ase CD38. Diabetes, 2013, 62, 1084-1093.	0.6	269
107	Germline Energetics, Aging, and Female Infertility. Cell Metabolism, 2013, 17, 838-850.	16.2	166
108	Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis, 2013, 16, 985-992.	7.2	30

#	Article	IF	CITATIONS
109	Type 5 Adenylyl Cyclase Increases Oxidative Stress by Transcriptional Regulation of Manganese Superoxide Dismutase via the SIRT1/FoxO3a Pathway. Circulation, 2013, 127, 1692-1701.	1.6	82
110	A High-Confidence Interaction Map Identifies SIRT1 as a Mediator of Acetylation of USP22 and the SAGA Coactivator Complex. Molecular and Cellular Biology, 2013, 33, 1487-1502.	2.3	58
111	Measurement of Sirtuin Enzyme Activity Using a Substrate-Agnostic Fluorometric Nicotinamide Assay. Methods in Molecular Biology, 2013, 1077, 167-177.	0.9	20
112	Analysis of 41 cancer cell lines reveals excessive allelic loss and novel mutations in the <i> SIRT1 </i>	2.6	30
113	Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. Cell Cycle, 2013, 12, 2233-2240.	2.6	18
114	Studying the Replicative Life Span of Yeast Cells. Methods in Molecular Biology, 2013, 1048, 49-63.	0.9	22
115	Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels Journal of Biological Chemistry, 2013, 288, 24160.	3.4	0
116	Prolyl Isomerase Pin 1 Regulates Neuronal Differentiation via \hat{l}^2 -Catenin. Molecular and Cellular Biology, 2012, 32, 2966-2978.	2.3	53
117	The Intersection Between Aging and Cardiovascular Disease. Circulation Research, 2012, 110, 1097-1108.	4.5	980
118	The Longevity of Sirtuins. Cell Reports, 2012, 2, 1473-1474.	6.4	10
119	Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism. Physiological Reviews, 2012, 92, 1479-1514.	28.8	551
120	Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 185-195.	3.8	155
	2012, 1022, 103-193.	3.6	
121	SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism, 2012, 15, 675-690.	16.2	1,251
121	SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial		
	SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism, 2012, 15, 675-690. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8,	16.2	1,251
122	SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism, 2012, 15, 675-690. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a	9.1	1,251 3,122
122	SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism, 2012, 15, 675-690. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging, 2012, 4, 499-508. Resveratrol Induces Erythroid Maturation by Activating FOXO3 and Improves in Vivo Erythropoiesis in	9.1 3.1	1,251 3,122 91

#	Article	IF	CITATIONS
127	Rapamycin, But Not Resveratrol or Simvastatin, Extends Life Span of Genetically Heterogeneous Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 191-201.	3.6	774
128	Resveratrol Inhibits Pathologic Retinal Neovascularization in <i> Vldlr </i> < sup> $\hat{a}^2/\hat{a}^2 < sup > (i > Mice < /i > , 2011, 52, 2809.$		76
129	Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stressâ€activated protein kinase. EMBO Reports, 2011, 12, 1062-1068.	4.5	45
130	Sirtuins in Aging and Age-Related Diseases. , 2011, , 243-274.		7
131	SRT1720 improves survival and healthspan of obese mice. Scientific Reports, 2011, 1, 70.	3.3	249
132	Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E952-61.	7.1	142
133	Characterization of murine SIRT3 transcript variants and corresponding protein products. Journal of Cellular Biochemistry, 2010, 111, 1051-1058.	2.6	34
134	Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging, 2010, 2, 914-923.	3.1	462
135	Dietary Restriction: Standing Up for Sirtuins. Science, 2010, 329, 1012-1013.	12.6	63
136	SIRT1 mRNA Expression May Be Associated With Energy Expenditure and Insulin Sensitivity. Diabetes, 2010, 59, 829-835.	0.6	93
137	Mammalian Sirtuins: Biological Insights and Disease Relevance. Annual Review of Pathology: Mechanisms of Disease, 2010, 5, 253-295.	22.4	1,742
138	The Aging Liver and the Effects of Long Term Caloric Restriction. , 2010, , 191-216.		5
139	SIRT1 Is Essential for Normal Cognitive Function and Synaptic Plasticity. Journal of Neuroscience, 2010, 30, 9695-9707.	3.6	452
140	A Blueprint for Developing Therapeutic Approaches That Increase Healthspan and Delay Death. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 693-694.	3.6	9
141	Impact papers on aging in 2009. Aging, 2010, 2, 111-121.	3.1	35
142	Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Science, 2009, 18, 514-525.	7.6	126
143	NQR1 controls lifespan by regulating the promotion of respiratory metabolism in yeast. Aging Cell, 2009, 8, 140-151.	6.7	37
144	The ageing epigenome: Damaged beyond repair?. Ageing Research Reviews, 2009, 8, 189-198.	10.9	77

#	Article	IF	CITATIONS
145	Aging: past, present and future. Aging, 2009, 1, 1-5.	3.1	48
146	Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging, 2009, 1, 515-528.	3.1	146
147	Xenohormesis: Sensing the Chemical Cues of Other Species. Cell, 2008, 133, 387-391.	28.9	259
148	SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging. Cell, 2008, 135, 907-918.	28.9	756
149	Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span. Cell Metabolism, 2008, 8, 157-168.	16.2	1,060
150	The SIRT1 Deacetylase Suppresses Intestinal Tumorigenesis and Colon Cancer Growth. PLoS ONE, 2008, 3, e2020.	2.5	516
151	What is Xenohormesis?. American Journal of Pharmacology and Toxicology, 2008, 3, 152-159.	0.7	28
152	MSN2 and MSN4 Link Calorie Restriction and TOR to Sirtuin-Mediated Lifespan Extension in Saccharomyces cerevisiae. PLoS Biology, 2007, 5, e261.	5.6	273
153	Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival. Cell, 2007, 130, 1095-1107.	28.9	855
154	The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of dietâ€induced obesity. FASEB Journal, 2007, 21, 3629-3639.	0.5	211
155	Sirtuins in mammals: insights into their biological function. Biochemical Journal, 2007, 404, 1-13.	3.7	1,503
156	The role of nuclear architecture in genomic instability and ageing. Nature Reviews Molecular Cell Biology, 2007, 8, 692-702.	37.0	256
157	SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO Journal, 2007, 26, 3169-3179.	7.8	982
158	Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 2007, 450, 712-716.	27.8	1,565
159	Design and synthesis of compounds that extend yeast replicative lifespan. Aging Cell, 2007, 6, 35-43.	6.7	102
160	Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicology and Applied Pharmacology, 2007, 222, 122-128.	2.8	631
161	Sirtuins: a conserved key unlocking AceCS activity. Trends in Biochemical Sciences, 2007, 32, 1-4.	7.5	59
162	Caloric Restriction and Life Span Determination of Yeast Cells. Methods in Molecular Biology, 2007, 371, 97-109.	0.9	9

#	Article	IF	CITATIONS
163	The role of protein arginine methylation in the formation of silent chromatin. Genes and Development, 2006, 20, 3249-3254.	5.9	48
164	Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery, 2006, 5, 493-506.	46.4	3,283
165	Unlocking the Secrets of Longevity Genes. Scientific American, 2006, 294, 48-57.	1.0	118
166	Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444, 337-342.	27.8	3,882
167	Nampt/PBEF/Visfatin: A regulator of mammalian health and longevity?. Experimental Gerontology, 2006, 41, 718-726.	2.8	99
168	Life-Span Extension in Yeast. Science, 2006, 312, 195d-197d.	12.6	31
169	Sirtuins for healthy neurons. Nature Genetics, 2005, 37, 339-340.	21.4	41
170	Toward a unified theory of caloric restriction and longevity regulation. Mechanisms of Ageing and Development, 2005, 126, 987-1002.	4.6	516
171	HST2 Mediates SIR2-Independent Life-Span Extension by Calorie Restriction. Science, 2005, 309, 1861-1864.	12.6	213
172	Design, Synthesis, and Biological Evaluation of Sirtinol Analogues as Class III Histone/Protein Deacetylase (Sirtuin) Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 7789-7795.	6.4	159
173	Dietary Restriction, Hormesis, and Small Molecule Mimetics. , 2005, , 63-104.		2
174	Poly-Glutamine Induces Bax-Mediated Cell Death by Dissociating Ku70 from Bax through Ku70-Acetylation Blood, 2005, 106, 4299-4299.	1.4	0
175	Small molecules that regulate lifespan: evidence for xenohormesis. Molecular Microbiology, 2004, 53, 1003-1009.	2.5	221
176	Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 2004, 430, 686-689.	27.8	1,742
177	Role of the N-terminal region of Rap1p in the transcriptional activation of glycolytic genes inSaccharomyces cerevisiae. Yeast, 2004, 21, 851-866.	1.7	20
178	Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase. Science, 2004, 303, 2011-2015.	12.6	2,913
179	Acetylation of the C Terminus of Ku70 by CBP and PCAF Controls Bax-Mediated Apoptosis. Molecular Cell, 2004, 13, 627-638.	9.7	550
180	Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase. Science, 2004, 305, 390-392.	12.6	1,784

#	Article	IF	Citations
181	Yeast RecQ Helicases: Clues to DNA Repair, Genome Stability and Aging. , 2004, , 78-106.		1
182	Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, 425, 191-196.	27.8	3,450
183	Yeast Life-Span Extension by Calorie Restriction Is Independent of NAD Fluctuation. Science, 2003, 302, 2124-2126.	12.6	152
184	Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature, 2003, 423, 181-185.	27.8	671
185	Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin. Microbiology and Molecular Biology Reviews, 2003, 67, 376-399.	6.6	207
186	CELL BIOLOGY: An Age of Instability. Science, 2003, 301, 1859-1860.	12.6	9
187	Metabolic Regulation of Gene Silencing and Life Span. , 2003, , 193-211.		0
188	Is DNA Cut Out for a Long Life?. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 8pe-8.	0.8	0
189	Manipulation of a Nuclear NAD+ Salvage Pathway Delays Aging without Altering Steady-state NAD+ Levels. Journal of Biological Chemistry, 2002, 277, 18881-18890.	3.4	269
190	Inhibition of Silencing and Accelerated Aging by Nicotinamide, a Putative Negative Regulator of Yeast Sir2 and Human SIRT1. Journal of Biological Chemistry, 2002, 277, 45099-45107.	3.4	864
191	TPE or not TPE? It's no longer a question. Trends in Pharmacological Sciences, 2002, 23, 1-4.	8.7	19
192	Paradigms and pitfalls of yeast longevity research. Mechanisms of Ageing and Development, 2002, 123, 857-867.	4.6	78
193	Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3174-3179.	7.1	155
194	Control of Expression of One-carbon Metabolism Genes of Saccharomyces cerevisiae Is Mediated by a Tetrahydrofolate-responsive Protein Binding to a Glycine Regulatory Region Including a Core 5′-CTTCTT-3′ Motif. Journal of Biological Chemistry, 1999, 274, 10523-10532.	3.4	15
195	Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9100-9105.	7.1	152
196	Molecular Biology of Aging. Cell, 1999, 96, 291-302.	28.9	492
197	MEC1-Dependent Redistribution of the Sir3 Silencing Protein from Telomeres to DNA Double-Strand Breaks. Cell, 1999, 97, 609-620.	28.9	323
198	Molecular mechanisms of yeast aging. Trends in Biochemical Sciences, 1998, 23, 131-134.	7.5	110

#	ARTICLE	IF	CITATIONS
199	AGING INSACCHAROMYCES CEREVISIAE. Annual Review of Microbiology, 1998, 52, 533-560.	7.3	164
200	Accelerated Aging and Nucleolar Fragmentation in Yeast sgs1 Mutants. Science, 1997, 277, 1313-1316.	12.6	394
201	Redistribution of Silencing Proteins from Telomeres to the Nucleolus Is Associated with Extension of Life Span in S. cerevisiae. Cell, 1997, 89, 381-391.	28.9	368
202	Extrachromosomal rDNA Circles— A Cause of Aging in Yeast. Cell, 1997, 91, 1033-1042.	28.9	1,394
203	Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. Gene, 1997, 186, 13-20.	2.2	35
204	Specific induction by glycine of the gene for the Pâ€subunit of glycine decarboxylase from Saccharomyces cerevisiae. Molecular Microbiology, 1996, 19, 611-623.	2.5	31