Marie-Josée Fortin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7150106/publications.pdf

Version: 2024-02-01

41344 38395 10,822 155 49 95 citations h-index g-index papers 163 163 163 14774 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 2012, 21, 481-497.	5.8	1,130
2	Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 2012, 82, 257-275.	5.4	506
3	EDITOR'S CHOICE: Stepping stones are crucial for species' longâ€distance dispersal and range expansion through habitat networks. Journal of Applied Ecology, 2014, 51, 171-182.	4.0	413
4	Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 2010, 11, 375-385.	1.5	356
5	SPATIAL ANALYSIS OF LANDSCAPES: CONCEPTS AND STATISTICS. Ecology, 2005, 86, 1975-1987.	3.2	347
6	Considering spatial and temporal scale in landscapeâ€genetic studies of gene flow. Molecular Ecology, 2010, 19, 3565-3575.	3.9	347
7	Analysing ecological networks of species interactions. Biological Reviews, 2019, 94, 16-36.	10.4	347
8	Connectivity for conservation: a framework to classify network measures. Ecology, 2011, 92, 847-858.	3.2	308
9	Should the Mantel test be used in spatial analysis?. Methods in Ecology and Evolution, 2015, 6, 1239-1247.	5.2	276
10	Fire and biodiversity in the Anthropocene. Science, 2020, 370, .	12.6	240
11	From Graphs to Spatial Graphs. Annual Review of Ecology, Evolution, and Systematics, 2010, 41, 21-38.	8.3	238
12	The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecology, 2010, 25, 519-532.	4.2	203
12			203
	25, 519-532.	4.2	
13	25, 519-532. Spatial autocorrelation and statistical tests in ecology. Ecoscience, 2002, 9, 162-167.	4.2 1.4	192
13	Spatial autocorrelation and statistical tests in ecology. Ecoscience, 2002, 9, 162-167. Spatial Graphs: Principles and Applications for Habitat Connectivity. Ecosystems, 2007, 10, 448-461. Processâ€based models are required to manage ecological systems in a changing world. Ecosphere, 2013,	4.2 1.4 3.4	192
13 14 15	Spatial autocorrelation and statistical tests in ecology. Ecoscience, 2002, 9, 162-167. Spatial Graphs: Principles and Applications for Habitat Connectivity. Ecosystems, 2007, 10, 448-461. Processâ€based models are required to manage ecological systems in a changing world. Ecosphere, 2013, 4, 1-12. Modelling dendritic ecological networks in space: an integrated network perspective. Ecology	4.2 1.4 3.4	192 191 182

#	Article	IF	CITATIONS
19	Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Molecular Ecology Resources, 2012, 12, 276-284.	4.8	143
20	Applications of spatial statistical network models to stream data. Wiley Interdisciplinary Reviews: Water, 2014, 1, 277-294.	6.5	139
21	On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos, 2003, 102, 203-212.	2.7	130
22	Spatial autoregressive models for statistical inference from ecological data. Ecological Monographs, 2018, 88, 36-59.	5.4	128
23	Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landscape Ecology, 2012, 27, 153-157.	4.2	118
24	Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecology, 2012, 27, 303-317.	4.2	114
25	Optimizing the choice of a spatial weighting matrix in eigenvectorâ€based methods. Ecology, 2018, 99, 2159-2166.	3.2	106
26	EFFECTS OF SPATIAL STRUCTURES ON THE RESULTS OF FIELD EXPERIMENTS. Ecology, 2004, 85, 3202-3214.	3.2	100
27	A conceptual framework for the spatial analysis of landscape genetic data. Conservation Genetics, 2013, 14, 253-261.	1.5	95
28	Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by <scp>RAD</scp> seq, in a highly dispersive marine invertebrate (<i>Parastichopus) Tj ETQq0 0 0 rgB</i>	「/Osvoerlock	≀ 1 0 ⁄2f 50 377
29	How to test the significance of the relation between spatially autocorrelated data at the landscape scale: A case study using fire and forest maps. Ecoscience, 2002, 9, 213-218.	1.4	88
30	Crossâ€scale integration of knowledge for predicting species ranges: a metamodelling framework. Global Ecology and Biogeography, 2016, 25, 238-249.	5.8	88
31	Stateâ€andâ€transition simulation models: a framework for forecasting landscape change. Methods in Ecology and Evolution, 2016, 7, 1413-1423.	5.2	86
32	Spatial Ecology and Conservation Modeling. , 2018, , .		84
33	The spatial scaling of species interaction networks. Nature Ecology and Evolution, 2018, 2, 782-790.	7.8	77
34	Spatioâ€ŧemporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods in Ecology and Evolution, 2017, 8, 1253-1264.	5.2	76
35	The marine fish food web is globally connected. Nature Ecology and Evolution, 2019, 3, 1153-1161.	7.8	76
36	Trajectory analysis in community ecology. Ecological Monographs, 2019, 89, e01350.	5.4	74

#	Article	IF	Citations
37	Exploring spatial non-stationarity of fisheries survey data using geographically weighted regression (GWR): an example from the Northwest Atlantic. ICES Journal of Marine Science, 2010, 67, 145-154.	2.5	71
38	The NSERC Canadian Lake Pulse Network: A national assessment of lake health providing science for water management in a changing climate. Science of the Total Environment, 2019, 695, 133668.	8.0	68
39	Spatial distribution of late-successional coniferous species regeneration following disturbance in southwestern Québec boreal forest. Forest Ecology and Management, 2001, 140, 29-37.	3.2	67
40	Disturbances amplify tree community responses to climate change in the temperate–boreal ecotone. Global Ecology and Biogeography, 2019, 28, 1668-1681.	5.8	67
41	Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Global Ecology and Biogeography, 2006, 15, 182-191.	5.8	65
42	Expanding northward: influence of climate change, forest connectivity, and population processes on a threatened species' range shift. Global Change Biology, 2011, 17, 17-31.	9.5	64
43	Seasonal and temporal changes in species use of the landscape: how do they impact the inferences from multi-scale habitat modeling?. Landscape Ecology, 2016, 31, 1261-1276.	4.2	64
44	Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion. Journal of Biogeography, 2005, 32, 1979-1992.	3.0	63
45	Hosts, parasites and their interactions respond to different climatic variables. Global Ecology and Biogeography, 2017, 26, 942-951.	5.8	62
46	Spatial autocorrelation and statistical tests: Some solutions. Journal of Agricultural, Biological, and Environmental Statistics, 2009, 14, 188-206.	1.4	60
47	How spatio-temporal habitat connectivity affects amphibian genetic structure. Frontiers in Genetics, 2015, 6, 275.	2.3	60
48	Functional responses, seasonal variation and thresholds in behavioural responses of moose to road density. Journal of Applied Ecology, 2013, 50, 286-294.	4.0	58
49	Signatures of the collapse and incipient recovery of an overexploited marine ecosystem. Royal Society Open Science, 2017, 4, 170215.	2.4	57
50	Habitat alteration and habitat fragmentation differentially affect beta diversity of stream fish communities. Landscape Ecology, 2017, 32, 647-662.	4.2	53
51	Spatial Autocorrelation in Ecological Studies: A Legacy of Solutions and Myths. Geographical Analysis, 2009, 41, 392-397.	3.5	52
52	The Effects of Spatial Legacies following Shifting Management Practices and Fire on Boreal Forest Age Structure. Ecosystems, 2007, 10, 1261-1277.	3.4	51
53	The structure of probabilistic networks. Methods in Ecology and Evolution, 2016, 7, 303-312.	5.2	49
54	The effectiveness of Bayesian stateâ€space models for estimating behavioural states from movement paths. Methods in Ecology and Evolution, 2013, 4, 433-441.	5.2	47

#	Article	IF	Citations
55	The geography of metapopulation synchrony in dendritic river networks. Ecology Letters, 2021, 24, 791-801.	6.4	46
56	Network ecology in dynamic landscapes. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20201889.	2.6	45
57	Moderate disturbances accelerate forest transition dynamics under climate change in the temperate–boreal ecotone of eastern North America. Global Change Biology, 2020, 26, 4418-4435.	9.5	44
58	Future impact of climate extremes in the Mediterranean: Soil erosion projections when fire and extreme rainfall meet. Land Degradation and Development, 2020, 31, 3040-3054.	3.9	44
59	Putatively adaptive genetic variation in the giant California sea cucumber (<i>Parastichopus) Tj ETQq1 1 0.78431 sequencing data. Molecular Ecology, 2018, 27, 5035-5048.</i>	4 rgBT /O 3.9	verlock 10 T 43
60	Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs. Global Change Biology, 2018, 24, e67-e79.	9.5	42
61	Assessment of the status and viability of a population of moose (<i>Alces alces</i>) at its southern range limit in Ontario. Canadian Journal of Zoology, 2012, 90, 422-434.	1.0	40
62	Modelling Spatial Interactions Among Fire, Spruce Budworm, and Logging in the Boreal Forest. Ecosystems, 2011, 14, 60-75.	3.4	38
63	A multiple-species framework for integrating movement processes across life stages into the design of marine protected areas. Biological Conservation, 2017, 216, 93-100.	4.1	38
64	Inland surface waters in protected areas globally: Current coverage and 30-year trends. PLoS ONE, 2019, 14, e0210496.	2.5	38
65	Uncertainties in coupled species distribution–metapopulation dynamics models for risk assessments under climate change. Diversity and Distributions, 2013, 19, 541-554.	4.1	37
66	The Potential of Agricultural Conversion to Shape Forest Fire Regimes in Mediterranean Landscapes. Ecosystems, 2020, 23, 34-51.	3.4	37
67	Network analysis can guide resilienceâ€based management in forest landscapes under global change. Ecological Applications, 2021, 31, e2221.	3.8	37
68	Phylogenetic turnover patterns consistent with niche conservatism in montane plant species. Journal of Ecology, 2015, 103, 742-749.	4.0	35
69	Incorporating putatively neutral and adaptive genomic data into marine conservation planning. Conservation Biology, 2021, 35, 909-920.	4.7	35
70	Ecological network complexity scales with area. Nature Ecology and Evolution, 2022, 6, 307-314.	7.8	35
71	Spatial association between forest heterogeneity and breeding territory boundaries of two forest songbirds. Landscape Ecology, 2004, 19, 591-601.	4.2	34
72	Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm <i>Choristoneura fumiferana /i>. Ecography, 2018, 41, 1556-1571.</i>	4. 5	34

#	Article	IF	CITATIONS
73	Disentangling habitat and social drivers of nesting patterns in songbirds. Landscape Ecology, 2009, 24, 519-531.	4.2	33
74	Synthetic datasets and community tools for the rapid testing of ecological hypotheses. Ecography, 2016, 39, 402-408.	4.5	32
75	Importance of spatio–temporal connectivity to maintain species experiencing range shifts. Ecography, 2020, 43, 591-603.	4.5	32
76	Conceptualizing ecosystem services using social–ecological networks. Trends in Ecology and Evolution, 2022, 37, 211-222.	8.7	32
77	The northern limit of Pinus banksiana Lamb. in Canada: explaining the difference between the eastern and western distributions. Journal of Biogeography, 2003, 30, 1709-1718.	3.0	30
78	The influence of landscape characteristics and home-range size on the quantification of landscape-genetics relationships. Landscape Ecology, 2012, 27, 253-266.	4.2	30
79	Response of pine natural regeneration to smallâ€scale spatial variation in a managed Mediterranean mountain forest. Applied Vegetation Science, 2009, 12, 488-503.	1.9	29
80	The combined effects of landâ€use legacies and novel fire regimes on bird distributions in the Mediterranean. Journal of Biogeography, 2013, 40, 1535-1547.	3.0	29
81	Holistic Assessment of Microplastics and Other Anthropogenic Microdebris in an Urban Bay Sheds Light on Their Sources and Fate. ACS ES&T Water, 2021, 1, 1401-1410.	4.6	29
82	Evaluating forest resilience to global threats using functional response traits and network properties. Ecological Applications, 2020, 30, e02095.	3.8	28
83	Spatially structured statistical network models for landscape genetics. Ecological Monographs, 2019, 89, e01355.	5.4	27
84	Model selection with multiple regression on distance matrices leads to incorrect inferences. PLoS ONE, 2017, 12, e0175194.	2.5	26
85	Hydrogeomorphic edge detection and delineation of landscape functional units from lidar digital elevation models. Water Resources Research, 2009, 45, .	4.2	25
86	An early forest inventory indicates high accuracy of forest composition data in preâ€settlement land survey records. Journal of Vegetation Science, 2014, 25, 691-702.	2.2	25
87	Implications of incomplete networks on estimation of landscape genetic connectivity. Conservation Genetics, 2013, 14, 287-298.	1.5	24
88	Using multiple metrics to estimate seasonal landscape connectivity for Blanding's turtles (Emydoidea) Tj E1	⁻ QqQ <u>,9</u> 0 rg	gBT_1Qverlock
89	Effects of nonnative species on the stability of riverine fish communities. Ecography, 2020, 43, 1156-1166.	4.5	24
90	Identifying significant scale-specific spatial boundaries using wavelets and null models: spruce budworm defoliation in Ontario, Canada as a case study. Landscape Ecology, 2010, 25, 873-887.	4.2	23

#	Article	IF	CITATIONS
91	Spatial contiguity and continuity of canopy gaps in mixed wood boreal forests: persistence, expansion, shrinkage and displacement. Journal of Ecology, 2012, 100, 1257-1268.	4.0	23
92	The Ecological Role of Sharks on Coral Reefs: Response to Roff et al Trends in Ecology and Evolution, 2016, 31, 586-587.	8.7	23
93	Connecting governance interventions to ecosystem services provision: A socialâ€ecological network approach. People and Nature, 2021, 3, 266-280.	3.7	23
94	Categorical, class-focused map patterns: characterization and comparison. Landscape Ecology, 2013, 28, 1587-1599.	4.2	22
95	The complimentary role of genetic and ecological data in understanding population structure: a case study using moose (Alces alces). European Journal of Wildlife Research, 2012, 58, 415-423.	1.4	21
96	Managing for the unexpected: Building resilient forest landscapes to cope with global change. Global Change Biology, 2022, 28, 4323-4341.	9.5	21
97	An invasive species' relationship with environmental variables changes across multiple spatial scales. Landscape Ecology, 2012, 27, 1351-1362.	4.2	20
98	The response of amphibian larvae to environmental change is both consistent and variable. Oikos, 2016, 125, 1700-1711.	2.7	20
99	Temperature fineâ€ŧunes Mediterranean <i>Arabidopsis thaliana</i> life ycle phenology geographically. Plant Biology, 2018, 20, 148-156.	3.8	20
100	Fine scale waterbody data improve prediction of waterbird occurrence despite coarse species data. Ecography, 2019, 42, 511-520.	4.5	20
101	Forest landscape structure influences the cyclicâ€eruptive spatial dynamics of forest tent caterpillar outbreaks. Ecosphere, 2020, 11, e03096.	2.2	20
102	Understanding and Modeling Forest Disturbance Interactions at the Landscape Level. Frontiers in Ecology and Evolution, $2021, 9, \ldots$	2.2	20
103	Two-dimensional wavelet analysis of spruce budworm host basal area in the Border Lakes landscape. , 2011, 21, 2197-2209.		18
104	Assessing the role of landscape connectivity in recent woodpecker range expansion in Mediterranean Europe: forest management implications. European Journal of Forest Research, 2013, 132, 181-194.	2.5	18
105	Forest recovery patterns in response to divergent disturbance regimes in the Border Lakes region of Minnesota (USA) and Ontario (Canada). Forest Ecology and Management, 2014, 313, 199-211.	3.2	18
106	Integrating continuous stocks and flows into stateâ€andâ€transition simulation models of landscape change. Methods in Ecology and Evolution, 2018, 9, 1133-1143.	5.2	18
107	Assessing connectivity and the contribution of private lands to protected area networks in the United States. PLoS ONE, 2020, 15, e0228946.	2.5	18
108	Making predictive modelling ART: accurate, reliable, and transparent. Ecosphere, 2020, 11, e03160.	2.2	17

#	Article	IF	Citations
109	Grazing exclusion unleashes competitive plant responses in Iberian Atlantic mountain grasslands. Applied Vegetation Science, 2017, 20, 50-61.	1.9	16
110	Spatial structure effects on the detection of patches boundaries using local operators. Environmental and Ecological Statistics, 2008, 15, 447-467.	3.5	15
111	Host functional connectivity and the spread potential of Lyme disease. Landscape Ecology, 2018, 33, 1925-1938.	4.2	15
112	Marine Conservation and Marine Protected Areas. Population Genomics, 2019, , 423-446.	0.5	15
113	Revealing biases in the sampling of ecological interaction networks. PeerJ, 2019, 7, e7566.	2.0	15
114	Habitat Loss, Not Fragmentation, Drives Occurrence Patterns of Canada Lynx at the Southern Range Periphery. PLoS ONE, 2014, 9, e113511.	2.5	14
115	Bridging the divide between ecological forecasts and environmental decision making. Ecosphere, 2021, 12, .	2.2	14
116	Spatial pattern and persistence of historical fire boundaries in southern interior British Columbia. Environmental and Ecological Statistics, 2008, 15, 523-535.	3.5	13
117	Conserving woodland caribou habitat while maintaining timber yield: a graph theory approach. Canadian Journal of Forest Research, 2016, 46, 914-923.	1.7	12
118	Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada. Remote Sensing, 2021, 13, 1257.	4.0	12
119	Multiâ€ŧrophic metacommunity interactions mediate asynchrony and stability in fluctuating environments. Ecological Monographs, 2022, 92, e1484.	5.4	12
120	Effects of 20thâ€eentury settlement fires on landscape structure and forest composition in eastern Quebec, Canada. Journal of Vegetation Science, 2020, 31, 40-52.	2.2	11
121	Reorganization of tree assemblages over the last century in the northern hardwoods of eastern Canada. Applied Vegetation Science, 2019, 22, 474-483.	1.9	10
122	Integrating over uncertainty in spatial scale of response within multispecies occupancy models yields more accurate assessments of community composition. Ecography, 2019, 42, 2132-2143.	4.5	10
123	Dispersal traits interact with dynamic connectivity to affect metapopulation growth and stability. Theoretical Ecology, 2019, 12, 111-127.	1.0	10
124	Towards Monitoring Biodiversity in Amazonian Forests: How Regular Samples Capture Meso-Scale Altitudinal Variation in 25 km2 Plots. PLoS ONE, 2014, 9, e106150.	2.5	9
125	Spatioâ€ŧemporal variation of biotic factors underpins contemporary range dynamics of congeners. Global Change Biology, 2016, 22, 1201-1213.	9.5	9
126	The mechanisms generating community phylogenetic patterns change with spatial scale. Oecologia, 2020, 193, 655-664.	2.0	9

#	Article	IF	CITATIONS
127	State transition detection in the spatio-temporal incidence of malaria. Spatial and Spatio-temporal Epidemiology, 2010, 1, 251-259.	1.7	8
128	Recreational boating, landscape configuration, and local habitat structure as drivers of odonate community composition in an island setting. Insect Conservation and Diversity, 2015, 8, 31-42.	3.0	8
129	Influence of habitat availability and fire disturbance on a northern range boundary. Journal of Biogeography, 2021, 48, 394-404.	3.0	8
130	Preface to the special issue on spatial statistics for boundary and patch analysis. Environmental and Ecological Statistics, 2008, 15, 365-367.	3.5	7
131	Urbanization, Grassland, and Diet Influence Coyote (Canis latrans) Parasitism Structure. EcoHealth, 2015, 12, 645-659.	2.0	7
132	Restoration Strategies to Improve Connectivity for Golden-Headed Lion Tamarins (Leontopithecus) Tj ETQq0 0 0 962-983.	rgBT /Ove	erlock 10 Tf 50 7
133	Transferability and scalability of species distribution models: a test with sedentary marine invertebrates. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 766-778.	1.4	7
134	Ecological Dynamics: Integrating Empirical, Statistical, and Analytical Methods. Trends in Ecology and Evolution, 2020, 35, 1090-1099.	8.7	7
135	Inferred seasonal interaction rewiring of a freshwater stream fish network. Ecography, 2021, 44, 219-230.	4.5	7
136	Dynamic larval dispersal can mediate the response of marine metapopulations to multiple climate change impacts. Oikos, 2021, 130, 989-1000.	2.7	7
137	A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Molecular Ecology Resources, 2019, 19, 929-943.	4.8	6
138	Monitoring social–ecological networks for biodiversity and ecosystem services in human-dominated landscapes. Facets, 2021, 6, 1670-1692.	2.4	6
139	Fine-scale spatial segregation in a pelagic seabird driven by differential use of tidewater glacier fronts. Scientific Reports, 2021, 11, 22109.	3.3	6
140	Assessing the current water clarity status of ~100,000 lakes across southern Canada: A remote sensing approach. Science of the Total Environment, 2022, 826, 153971.	8.0	6
141	How network size strongly determines trophic specialisation: AÂtechnical comment on Luna et al. (2022). Ecology Letters, 2022, 25, 1914-1916.	6.4	6
142	Quantifying the spatial relationship between bird species' distributions and landscape feature boundaries in southern Ontario, Canada. Landscape Ecology, 2012, 27, 1481-1493.	4.2	5
143	Dispersal analysis of threePeltigeraspecies based on landscape genetics data. Mycology, 2013, 4, 187-195.	4.4	5
144	Spruce Budworm (Choristoneura fumiferana Clem.) Defoliation Promotes Vertical Fuel Continuity in Ontario's Boreal Mixedwood Forest. Forests, 2018, 9, 256.	2.1	5

#	Article	IF	CITATIONS
145	Accounting for stochasticity in demographic compensation along the elevational range of an alpine plant. Ecology Letters, 2020, 23, 870-880.	6.4	5
146	Integrating landscape resistance and multi-scale predictor of habitat selection for amphibian distribution modelling at large scale. Landscape Ecology, 2021, 36, 3557-3573.	4.2	5
147	Sampling and asymptotic network properties of spatial multiâ€trophic networks. Oikos, 2021, 130, 2250-2259.	2.7	5
148	Disentangling the spatial distributions of a sponge-dwelling fish and its host sponge. Marine Biology, 2019, 166, 1.	1.5	4
149	Modelling the spatial–temporal distributions and associated determining factors of a keystone pelagic fish. ICES Journal of Marine Science, 2020, 77, 2776-2789.	2.5	4
150	Food web reconstruction through phylogenetic transfer of lowâ€rank network representation. Methods in Ecology and Evolution, 2022, 13, 2838-2849.	5.2	4
151	A data-limited modeling approach for conserving connectivity in marine protected area networks. Marine Biology, 2021, 168, 1.	1.5	3
152	Why body size matters: how larger fish ontogeny shapes ecological network topology. Oikos, 2022, 2022, .	2.7	3
153	Testing theoretical metapopulation conditions with genotypic data from Boreal Chorus Frogs (<i>Pseudacris maculata</i>). Canadian Journal of Zoology, 2019, 97, 1042-1053.	1.0	2
154	Habitat network topology influences the importance of ecological traps in metapopulations. Ecosphere, 2020, 11, e03146.	2.2	2
155	Research in the spatial sciences: how are Canadian geographers contributing?. Canadian Geographer / Geographie Canadien, 2010, 54, 4-14.	1.5	1