Corinne Antignac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7149804/publications.pdf

Version: 2024-02-01

109321 223800 5,073 47 35 46 citations g-index h-index papers 49 49 49 6213 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nature Genetics, 1998, 18, 319-324.	21.4	562
2	Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling. Cell, 2012, 150, 533-548.	28.9	347
3	ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. Journal of Clinical Investigation, 2013, 123, 5179-5189.	8.2	275
4	Mutations in the Chloride Channel Gene CLCNKB as a Cause of Classic Bartter Syndrome. Journal of the American Society of Nephrology: JASN, 2000, 11, 1449-1459.	6.1	255
5	Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nature Genetics, 2005, 37, 964-968.	21.4	244
6	<i>INF2</i> Mutations in Charcot–Marie–Tooth Disease with Glomerulopathy. New England Journal of Medicine, 2011, 365, 2377-2388.	27.0	235
7	ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. Journal of Clinical Investigation, 2013, 123, 3243-3253.	8.2	196
8	Nephropathic cystinosis: an international consensus document. Nephrology Dialysis Transplantation, 2014, 29, iv87-iv94.	0.7	164
9	Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nature Genetics, 2017, 49, 1529-1538.	21.4	164
10	Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. Journal of Clinical Investigation, 2017, 127, 912-928.	8.2	160
11	Intralysosomal Cystine Accumulation in Mice Lacking Cystinosin, the Protein Defective in Cystinosis. Molecular and Cellular Biology, 2002, 22, 7622-7632.	2.3	151
12	Dominant Renin Gene Mutations Associated with Early-Onset Hyperuricemia, Anemia, and Chronic Kidney Failure. American Journal of Human Genetics, 2009, 85, 204-213.	6.2	146
13	Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nature Genetics, 2014, 46, 299-304.	21.4	134
14	Evidence of digenic inheritance in Alport syndrome. Journal of Medical Genetics, 2015, 52, 163-174.	3.2	129
15	Characterization of the NPHP1 Locus: Mutational Mechanism Involved in Deletions in Familial Juvenile Nephronophthisis. American Journal of Human Genetics, 2000, 66, 778-789.	6.2	125
16	Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Human Molecular Genetics, 2009, 18, R185-R194.	2.9	108
17	Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome. American Journal of Human Genetics, 2014, 95, 637-648.	6.2	108
18	Mutations in the COL4A4 and COL4A3 Genes Cause Familial Benign Hematuria. Journal of the American Society of Nephrology: JASN, 2002, 13, 1248-1254.	6.1	106

#	Article	IF	CITATIONS
19	Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Human Molecular Genetics, 2009, 18, 4711-4723.	2.9	94
20	Initial Steroid Sensitivity in Children with Steroid-Resistant Nephrotic Syndrome Predicts Post-Transplant Recurrence. Journal of the American Society of Nephrology: JASN, 2014, 25, 1342-1348.	6.1	93
21	Mutations of CEP83 Cause Infantile Nephronophthisis and Intellectual Disability. American Journal of Human Genetics, 2014, 94, 905-914.	6.2	90
22	Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. Journal of Clinical Investigation, 2018, 128, 4313-4328.	8.2	89
23	Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney International, 2014, 86, 589-599.	5.2	86
24	A Homozygous Missense Mutation in the Ciliary Gene TTC21B Causes Familial FSGS. Journal of the American Society of Nephrology: JASN, 2014, 25, 2435-2443.	6.1	86
25	Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nature Communications, 2015, 6, 8666.	12.8	84
26	Renal phenotype of the cystinosis mouse model is dependent upon genetic background. Nephrology Dialysis Transplantation, 2010, 25, 1059-1066.	0.7	82
27	ADCK4-Associated Glomerulopathy Causes Adolescence-Onset FSGS. Journal of the American Society of Nephrology: JASN, 2016, 27, 63-68.	6.1	79
28	Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation. PLoS Genetics, 2016, 12, e1005894.	3.5	77
29	Cystinosin is a Component of the Vacuolar H+-ATPase-Ragulator-Rag Complex Controlling Mammalian Target of Rapamycin Complex 1 Signaling. Journal of the American Society of Nephrology: JASN, 2016, 27, 1678-1688.	6.1	71
30	Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nature Communications, 2019, 10, 3967.	12.8	66
31	Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. Journal of Clinical Investigation, 2019, 130, 335-344.	8.2	54
32	Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Human Molecular Genetics, 2011, 20, 2611-2627.	2.9	53
33	Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney International, 2018, 94, 1013-1022.	5.2	51
34	TBC1D8B Loss-of-Function Mutations Lead to X-Linked Nephrotic Syndrome via Defective Trafficking Pathways. American Journal of Human Genetics, 2019, 104, 348-355.	6.2	40
35	Abolishment of proximal tubule albumin endocytosis does not affect plasma albumin duringÂnephrotic syndrome in mice. Kidney International, 2018, 93, 335-342.	5.2	35
36	Pseudouridylation defect due to <i>DKC1</i> and <i>NOP10</i> mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15137-15147.	7.1	32

#	Article	IF	CITATIONS
37	An international cohort study spanning five decades assessed outcomes of nephropathic cystinosis. Kidney International, 2021, 100, 1112-1123.	5.2	31
38	Genetic models: clues for understanding the pathogenesis of idiopathic nephrotic syndrome. Journal of Clinical Investigation, 2002, 109, 447-449.	8.2	29
39	Clinical utility gene card for: Cystinosis. European Journal of Human Genetics, 2014, 22, 713-713.	2.8	27
40	Interaction between galectin-3 and cystinosin uncovers a pathogenic role of inflammation inÂkidney involvement of cystinosis. Kidney International, 2019, 96, 350-362.	5. 2	23
41	A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies. PLoS Genetics, 2018, 14, e1007386.	3. 5	17
42	Endoplasmic reticulum–retained podocin mutants are massively degraded by the proteasome. Journal of Biological Chemistry, 2018, 293, 4122-4133.	3.4	16
43	Agonists of prostaglandin E ₂ receptors as potential first in class treatment for nephronophthisis and related ciliopathies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115960119.	7.1	13
44	QMPSF is sensitive and specific in the detection of NPHP1 heterozygous deletions. Clinical Chemistry and Laboratory Medicine, 2017, 55, 809-816.	2.3	7
45	Studying nonobstructive azoospermia in cystinosis: histologicÂexamination of testes andÂepididymis and sperm analysis inÂa Ctnsâ°'/â^' mouse model. Fertility and Sterility, 2012, 98, 162-165.	1.0	2
46	MP031THE MUTATION-DEPENDENT PATHOGENICITY OF THE NPHS2 R229Q VARIANT. Nephrology Dialysis Transplantation, 2016, 31, i353-i353.	0.7	0
47	Renal tubular dysgenesis and microcolon, a novel association. Report of three cases. European Journal of Medical Genetics, 2019, 62, 254-258.	1.3	o