Tadashi Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7149642/publications.pdf

Version: 2024-02-01

156536 214428 3,608 173 32 50 h-index citations g-index papers 173 173 173 2162 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Preparation of dual-cross network polymers by the knitting method and evaluation of their mechanical properties. NPG Asia Materials, 2022, 14, .	3.8	10
2	Rheo-Optical Study on the Viscoelastic Relaxation Modes of a Microgel Particle Suspension around the Liquid–Solid Transition Regime. Macromolecules, 2021, 54, 3270-3280.	2.2	3
3	Dynamics of the Topological Network Formed by Movable Crosslinks: Effect of Sliding Motion on Dielectric and Viscoelastic Relaxation Behavior. Macromolecules, 2021, 54, 3321-3333.	2.2	16
4	Strain-Induced Birefringence of Amorphous Polymers and Molecular Design of Optical Polymers. ACS Applied Polymer Materials, 2021, 3, 2264-2273.	2.0	16
5	Viscoelastic Relaxation of Polymerized Ionic Liquid and Lithium Salt Mixtures: Effect of Salt Concentration. Polymers, 2021, 13, 1772.	2.0	8
6	Rheological Scaling of Ionic Liquid-Based Polyelectrolytes in the Semidilute Unentangled Regime from Low to High Salt Concentrations. Macromolecules, 2021, 54, 5648-5661.	2.2	12
7	Rheological Behavior of Hydrogen Bonding Miscible Blend: High Molecular Weight Poly(2-vinyl) Tj ETQq1 1 0.7843	314 rgBT / 0.2	Oyerlock 10
8	Phase equilibrium and dielectric relaxation in mixture of 5CB with dilute dimethyl phthalate: effect of coupling between orientation and composition fluctuations on molecular dynamics in isotropic one-phase state. Soft Matter, 2021, 17, 6259-6272.	1.2	4
9	Linear Viscoelasticity and Birefringence of Poly- \hat{l}^3 -Benzyl- <scp>$<$scp>-Glutamate Solutions. Macromolecules, 2021, 54, 11360-11371.</scp>	2.2	4
10	Viscoelastic Relaxation of Cellulose Nanocrystals in Fluids: Contributions of Microscopic Internal Motions to Flexibility. Biomacromolecules, 2020, 21, 408-417.	2.6	14
11	Design and mechanical properties of supramolecular polymeric materials based on host–guest interactions: the relation between relaxation time and fracture energy. Polymer Chemistry, 2020, 11, 6811-6820.	1.9	19
12	Rheo-Optical and Dielectric Study on Dynamics of Bottlebrush-like Polymacromonomer Consisting of a Polyisoprene Main Chain and Polystyrene Side Chains. Macromolecules, 2020, 53, 7096-7106.	2.2	8
13	Rheological Test for the Homogeneity of Aqueous Blends ofÂAssociative Polymer Network and Entangled Linear Polymer. Nihon Reoroji Gakkaishi, 2020, 48, 49-54.	0.2	5
14	Effect of Head-to-Head Association/Dissociation on Viscoelastic and Dielectric Relaxation of Entangled Linear Polyisoprene: An Experimental Test. Macromolecules, 2020, 53, 1070-1083.	2.2	10
15	A rheo-optical study on the linear viscoelasticity and molecular dynamics of block copolymer solutions forming hexagonal close-packed cylindrical domains. Polymer Journal, 2020, 52, 1085-1091.	1.3	2
16	Ion Transport in Pendant and Backbone Polymerized Ionic Liquids. Macromolecules, 2019, 52, 6438-6448.	2.2	30
17	Effect of Host-Guest Interaction on Swelling Behavior and Equilibrium Swollen State of Host-Guest Gel. Nihon Reoroji Gakkaishi, 2019, 47, 99-104.	0.2	5
18	Precision Analysis of Polymer Rheology by Simultaneous Measurement of Viscoelasticity and Birefringence. Nihon Reoroji Gakkaishi, 2019, 47, 169-176.	0.2	2

#	Article	IF	CITATIONS
19	Relationship between global and segmental dynamics of poly(butylene oxide) studied by broadband dielectric spectroscopy. Journal of Chemical Physics, 2018, 148, 034904.	1.2	5
20	A Self-Build Apparatus for Oscillatory Flow Birefringence Measurements in a Co-Cylindrical Geometry. Nihon Reoroji Gakkaishi, 2018, 46, 221-226.	0.2	7
21	Effect of Non-Ideality of Wave Plate in Polarization Imaging Method for Rheo-Optical Studies on CTAB/NaSal Aqueous Solution. Nihon Reoroji Gakkaishi, 2018, 46, 93-98.	0.2	1
22	Viscoelastic Properties of Tightly Entangled Semiflexible Polymer Solutions. Macromolecules, 2018, 51, 9626-9634.	2.2	12
23	Rheological Behavior of Weakly Associated Polymers. Nihon Reoroji Gakkaishi, 2018, 46, 131-137.	0.2	3
24	Cu/Zn-superoxide dismutase forms fibrillar hydrogels in a pH-dependent manner via a water-rich extended intermediate state. PLoS ONE, 2018, 13, e0205090.	1.1	3
25	Anisotropic Dynamics of Benzonitrile Confined in \hat{l}' and $\hat{l}\mu$ Clathrate Phases of Syndiotactic Polystyrene. Macromolecules, 2018, 51, 8611-8619.	2.2	12
26	Introducing Large Counteranions Enhances the Elastic Modulus of Imidazolium-Based Polymerized Ionic Liquids. Macromolecules, 2018, 51, 4129-4142.	2.2	17
27	Linear viscoelastic studies on a transient network formed by host–guest interaction. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1109-1117.	2.4	13
28	Role of Stress-optical Rule in Rheo-optics. Oleoscience, 2018, 18, 553-560.	0.0	0
29	Re-examination of terminal relaxation behavior of high-molecular-weight ring polystyrene melts. Rheologica Acta, 2017, 56, 567-581.	1.1	36
30	Memory effect in elastic modulus of a hydrogen-bonding polymer network. Polymer Journal, 2017, 49, 229-236.	1.3	7
31	A Rheo-Optical Study on Reinforcement Effect of Silica Particle Filled Rubber. Macromolecules, 2017, 50, 8072-8082.	2.2	21
32	Polymerized Ionic Liquids: Correlation of Ionic Conductivity with Nanoscale Morphology and Counterion Volume. ACS Macro Letters, 2017, 6, 941-946.	2.3	65
33	An apparatus for birefringence and extinction angle distributions measurements in cone and plate geometry by polarization imaging method. Rheologica Acta, 2016, 55, 699-708.	1.1	10
34	High frequency viscoelastic measurements using optical tweezers on wormlike micelles of nonionic and cationic surfactants in aqueous solutions. Journal of Rheology, 2016, 60, 1055-1067.	1.3	6
35	Experimental Test for Viscoelastic Relaxation of Polyisoprene Undergoing Monofunctional Head-to-Head Association and Dissociation. Macromolecules, 2016, 49, 7088-7095.	2.2	24
36	A Multichain Slip-Spring Dissipative Particle Dynamics Simulation Method for Entangled Polymer Solutions. Macromolecules, 2016, 49, 9186-9191.	2.2	32

#	Article	IF	CITATIONS
37	Dynamics of polar aromatic molecules confined in a nanocavity of $\hat{\Gamma}$ -phase of syndiotactic polystyrene as studied by dielectric spectroscopy. Chemical Physics, 2016, 479, 122-128.	0.9	17
38	Reliability of intrinsic birefringence estimated via the modified stress-optical rule. Polymer Journal, 2016, 48, 1073-1078.	1.3	14
39	Rheological Properties of Microgel/Linear Polymer Mixed Systems. Kobunshi Ronbunshu, 2016, 73, 532-538.	0.2	0
40	Revisit the Stress-Optical Rule for Entangled Flexible Chains: Overshoot of Stress, Segmental Orientation, and Chain Stretch on Start-up of Flow. Nihon Reoroji Gakkaishi, 2015, 43, 105-112.	0.2	6
41	Viscoelastic Relaxation of Rouse Chains undergoing Head-to-Head Association and Dissociation: Motional Coupling through Chemical Equilibrium. Macromolecules, 2015, 48, 3014-3030.	2.2	32
42	BCC Grain Formation Triggered by Miscibility Jump on Temperature Drop. Macromolecules, 2015, 48, 1813-1823.	2.2	0
43	Detailed Analysis of Glass Transition Temperature on Polymer Blends with Hydrogen Bonding. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 43-46.	0.1	1
44	Detailed Analysis of Sub-Rouse Mode Observed in Polymerized Ionic Liquids with Dynamic Birefringence Measurements. Nihon Reoroji Gakkaishi, 2014, 42, 227-233.	0.2	6
45	The structure and viscoelasticity of novolac resins. Polymer Journal, 2014, 46, 584-591.	1.3	9
46	Viscoelastic properties and birefringence of phenolic resins. Polymer Journal, 2014, 46, 272-276.	1.3	3
47	Dynamical rigidity of cellulose derivatives in melts. Polymer Journal, 2014, 46, 149-154.	1.3	2
48	Dielectric and Viscoelastic Behavior of Star-Branched Polyisoprene: Two Coarse-Grained Length Scales in Dynamic Tube Dilation. Macromolecules, 2014, 47, 7637-7652.	2.2	22
49	Dynamics of Polar Low Mass Molecules Encapsulated in the $\hat{\Gamma}$ -cocrystal of Syndiotactic Polystyrene. Nihon Reoroji Gakkaishi, 2014, 42, 19-23.	0.2	5
50	Reliability of Intrinsic Viscosity Estimated by Single Point Procedure at High Concentrations. Nihon Reoroji Gakkaishi, 2014, 42, 261-264.	0.2	3
51	Dielectric Relaxation of Monodisperse Linear Polyisoprene: Contribution of Constraint Release. Macromolecules, 2013, 46, 6067-6080.	2.2	49
52	Dynamic Segment Size of the Cellulose Chain in an Ionic Liquid. Macromolecules, 2013, 46, 7118-7124.	2.2	23
53	Dynamics of a Probe Molecule Dissolved in Several Polymer Matrices with Different Side-Chain Structures: Determination of Correlation Length Relevant to Glass Transition. Macromolecules, 2013, 46, 2206-2215.	2.2	10
54	Dynamic Viscoelasticity and Birefringence of Poly(ionic liquids) in the Vicinity of Glass Transition Zone. Macromolecules, 2013, 46, 6104-6109.	2.2	16

#	Article	IF	Citations
55	Linear Viscoelasticity of Polystyrene Solution Having a Wide Molar Mass Distribution around the Coil Overlap Concentration. Nihon Reoroji Gakkaishi, 2013, 41, 151-156.	0.2	5
56	Viscoelastic Behavior of Polymerized Ionic Liquids with Various Charge Densities. Nihon Reoroji Gakkaishi, 2013, 41, 21-27.	0.2	6
57	Nonlinear Rheology of Telechelic Associative Polymer Networks: Shear Thickening and Thinning Behavior of Hydrophobically Modified Ethoxylated Urethane (HEUR) in Aqueous Solution. Macromolecules, 2012, 45, 888-898.	2.2	95
58	Dielectric Relaxation and Viscoelastic Behavior of Polymerized Ionic Liquids with Various Counteranions. Macromolecules, 2012, 45, 3850-3858.	2.2	87
59	Rheo-Optical Study on Dynamics of Bottlebrush-Like Polymacromonomer Consisting of Polystyrene. II. Side Chain Length Dependence on Dynamical Stiffness of Main Chain. Macromolecules, 2012, 45, 4801-4808.	2.2	30
60	Rheo-Optical Study of Viscoelastic Relaxation Modes in Block Copolymer Micellar Lattice System. Macromolecules, 2012, 45, 6580-6586.	2.2	12
61	Dynamic birefringence and non-linear rheology of diblock copolymer micellar solutions. Soft Matter, 2012, 8, 6161.	1.2	7
62	Stress-Optical Relationship for Particle Dispersion Systems. Nihon Reoroji Gakkaishi, 2012, 40, 79-83.	0.2	3
63	Dynamical coupling between stress and concentration fluctuations in a dynamically asymmetric polymer mixture, investigated by time-resolved small-angle neutron scattering combined with linear mechanical measurements. Soft Matter, 2011, 7, 9248.	1.2	10
64	Rheo-Optical Study on Dynamics of Bottlebrush-Like Polymacromonomer Consisting of Polystyrene Macromolecules, 2011, 44, 5414-5419.	2.2	36
65	Cooperative Dynamics in Polystyrene and Low-Mass Molecule Mixtures. Macromolecules, 2011, 44, 8324-8332.	2.2	19
66	Entanglement Dynamics in Miscible Polyisoprene/Poly(<i>p</i> - <i>tert</i> -butylstyrene) Blends. Macromolecules, 2011, 44, 1570-1584.	2.2	27
67	Viscoelastic Behavior of the Polymerized Ionic Liquid Poly(1-ethyl-3-vinylimidazolium) Tj ETQq1 1 0.784314 rgBT	Oyerlock	10 Tf 50 262
68	Dynamics of Polyisoprene-Poly(<i>p</i> - <i>tert</i> -butylstyrene) Diblock Copolymer in Disordered State. Macromolecules, 2011, 44, 1585-1602.	2,2	13
69	Dielectric and Viscoelastic Investigation of Segmental Dynamics of Polystyrene above Glass Transition Temperature: Cooperative Sequence Length and Relaxation Mode Distribution. Macromolecules, 2011, 44, 4355-4365.	2.2	20
70	On the Viscoelastic Segment Size of Cellulose. Nihon Reoroji Gakkaishi, 2011, 39, 159-163.	0.2	13
71	Miscibility and Dynamics of Poly(Vinyl Acetate)/ Poly(Methyl Glycidyl Ether) Blends. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 19-23.	0.1	0
72	Evaluation of Nematic Interaction Parameter between Polymer Segments and Low-Mass Molecules in Mixtures. Macromolecules, 2010, 43, 6099-6105.	2.2	20

#	Article	lF	CITATIONS
73	Dynamics of Low Mass Molecules Dissolved in Polymers. Nihon Reoroji Gakkaishi, 2010, 38, 41-46.	0.2	10
74	An Apparatus for Dynamic Viscoelasticity Measurement Using Laser Particle Tracking. Nihon Reoroji Gakkaishi, 2010, 38, 195-200.	0.2	1
75	Dielectric Relaxation of Polymer/Carbon Dioxide Systems. Macromolecules, 2009, 42, 4712-4718.	2.2	17
76	An Apparatus for Dynamic Birefringence Measurement under Oscillatory Shear Flow Using an Oblique Laser Beam. Nihon Reoroji Gakkaishi, 2009, 37, 205-210.	0.2	18
77	Component Dynamics in Polyisoprene/Poly(4- <i>tert</i> butylstyrene) Miscible Blends. Macromolecules, 2008, 41, 8694-8711.	2.2	38
78	Component Dynamics in Polystyreneâ^•4-Pentyl-4ʹ-Cyanobiphenyl Blend. AIP Conference Proceedings, 2008, , .	0.3	2
79	Shear small-angle light scattering studies of shear-induced concentration fluctuations and steady state viscoelastic properties. Journal of Chemical Physics, 2008, 128, 164911.	1.2	22
80	Effect of Surface Treatments on Viscoelastic Measurements of Thread-like Micellar Solutions. Nihon Reoroji Gakkaishi, 2008, 36, 187-190.	0.2	1
81	Viscoelastic Properties of Amorphous Polymers. Seikei-Kakou, 2008, 20, 84-89.	0.0	0
82	Viscoelastic and Dielectric Behavior of a Polyisoprene/Poly(4-tert-butyl styrene) Miscible Blend. Macromolecules, 2007, 40, 5389-5399.	2.2	27
83	Dielectric Behavior of cis-Polyisoprene in Carbon Dioxide under High Pressure. Nihon Reoroji Gakkaishi, 2007, 35, 155-161.	0.2	10
84	Observation of Phase Separation with Rheological Measurement. Nihon Reoroji Gakkaishi, 2007, 35, 221-224.	0.2	0
85	On the Relationship between Viscoelastic Segments and Kuhn Segments; Strain-Induced Chain Orientation in Fast Deformation. Macromolecules, 2006, 39, 4615-4618.	2.2	25
86	Transient Conformational Change of Beadâ^'Spring Ring Chain during Creep Process. Macromolecules, 2006, 39, 5419-5426.	2.2	33
87	Rheooptical Study on Poly(styrene macromonomer). Macromolecules, 2006, 39, 7601-7606.	2.2	20
88	Orientational anisotropy of bead-spring star chains during creep process. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3501-3517.	2.4	7
89	Role of chain connectivity in viscoelastic properties of polymeric liquids: A review. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 361-366.	2.6	3
90	Nonlinear Rheology and Retraction of Entangled Thread-Like Micelles. Nihon Reoroji Gakkaishi, 2006, 34, 165-170.	0.2	6

#	Article	IF	CITATIONS
91	Dielectric and Viscoelastic Study of Entanglement Dynamics: A Review of Recent Findings. Macromolecular Symposia, 2005, 228, 51-70.	0.4	15
92	Dynamic birefringence of cyclic olefin copolymers. Rheologica Acta, 2005, 45, 116-123.	1.1	14
93	Conformational dynamics of Rouse chains during creep/recovery processes: a review. Journal of Physics Condensed Matter, 2005, 17, R607-R636.	0.7	10
94	Nonlinear Rheology of CTAB/NaSal Aqueous Solutions:Â Finite Extensibility of a Network of Wormlike Micelles. Langmuir, 2005, 21, 1201-1208.	1.6	63
95	Nonlinear Rheology of Aqueous Solutions of Thread-like Micelles. Oleoscience, 2005, 5, 327-333.	0.0	О
96	Creep Behavior for Combined Rouse-Reptation Mechanism. Nihon Reoroji Gakkaishi, 2004, 32, 113-116.	0.2	6
97	Orientational anisotropy for Rouse eigenmodes during creep and recovery process. Rheologica Acta, 2004, 43, 634-644.	1.1	8
98	In Situ Dielectric Characterization of Poly(ethylene oxide) Melts Containing Lithium Perchlorate under Steady Shear Flow. Macromolecules, 2004, 37, 544-553.	2.2	15
99	Viscoelastic and Dielectric Behavior of Entangled Blends of Linear Polyisoprenes Having Widely Separated Molecular Weights:  Test of Tube Dilation Picture. Macromolecules, 2004, 37, 1937-1951.	2.2	84
100	Conformational Changes during Creep Process of Binary Blends of Rouse Chains. Macromolecules, 2004, 37, 8167-8170.	2.2	5
101	Test of Full and Partial Tube Dilation Pictures in Entangled Blends of Linear Polyisoprenes. Macromolecules, 2004, 37, 6619-6631.	2.2	97
102	Stress Overshoot of Entangled Polymers in Ï Solvent. Macromolecules, 2004, 37, 4317-4320.	2.2	7
103	Rheo-dielectrics in oligomeric and polymeric fluids: a review of recent findings. Journal of Physics Condensed Matter, 2003, 15, S909-S921.	0.7	19
104	Electric Birefringence of Polystyrene around the Glass Transition Zone. Macromolecules, 2003, 36, 9534-9538.	2.2	2
105	Rheology of Polystyrene Solutions with Scarcely Entangled Chains; Role of Slow Relaxation Mode in Nonlinear Behavior. Nihon Reoroji Gakkaishi, 2003, 31, 207-212.	0.2	5
106	Viscoelasticity of Polymers in Ï' Solvents around the Semidilute Regime. Macromolecules, 2002, 35, 9169-9175.	2,2	20
107	Significance of the Longest Rouse Relaxation Time in the Stress Relaxation Process at Large Deformation of Entangled Polymer Solutions. Macromolecules, 2002, 35, 4718-4724.	2.2	34
108	The Significance of the Rouse Segment:Â Its Concentration Dependence. Macromolecules, 2002, 35, 820-826.	2.2	29

#	Article	IF	Citations
109	Viscoelasticity of an Entangled Polymer Solution with Special Attention on a Characteristic Time for Nonlinear Behavior. Macromolecules, 2002, 35, 1770-1775.	2.2	35
110	Dielectric and Viscoelastic Relaxation of Highly Entangled Star Polyisoprene:Â Quantitative Test of Tube Dilation Model. Macromolecules, 2002, 35, 2339-2357.	2.2	110
111	Rheology of polystyrene solutions around the coil overlapping concentration: A phenomenological description of stresses in simple shear flow. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1038-1045.	2.4	8
112	Viscoelastic properties of dilute polymer solutions: The effect of varying the concentration. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 211-217.	2.4	12
113	Viscoelasticity and Birefringence of Low Birefringent Polyesters. Polymer Journal, 2000, 32, 411-414.	1.3	13
114	Dynamic birefringence of oligostyrene: A symptom of ?polymeric? mode. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 954-964.	2.4	6
115	Stress overshoot of polymer solutions at high rates of shear. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1917-1925.	2.4	101
116	Stress overshoot of polymer solutions at high rates of shear: semidilute polystyrene solutions with and without chain entanglement. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 3271-3276.	2.4	43
117	Viscoelasticity and Birefringence of Amorphous Polymers in the Glass Transition Zone Nihon Reoroji Gakkaishi, 2000, 28, 167-175.	0.2	7
118	Viscoelasticity of low molecular weight polystyrene. Separation of rubbery and glassy components. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 389-397.	2.4	39
119	Viscoelasticity and birefringence of syndiotactic polystyrene. I. Dynamic measurement in supercooled state. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 399-404.	2.4	10
120	Comment on "Birefringence in the Softening Zone― Macromolecules, 1999, 32, 4725-4727.	2.2	5
121	A birefringence study of polymer crystallization in the process of elongation of films. Polymer, 1998, 39, 2515-2520.	1.8	40
122	A Rheo-Optical Study on Polystyrene under Large Tensile Deformation around the Glass Transition Temperature. Macromolecules, 1998, 31, 6977-6983.	2.2	29
123	Effects of Wavelength on Strain-Induced Birefringence of Polymers. Polymer Journal, 1998, 30, 929-934.	1.3	12
124	Shear Birefringence Measurement on Amorphous Polymers around the Glass Transition Zone. Nihon Reoroji Gakkaishi, 1998, 26, 237-241.	0.2	5
125	Molecular origin of viscoelasticity and chain orientation of glassy polymers. Rheologica Acta, 1997, 36, 239-244.	1.1	35
126	Birefringence of amorphous polyarylates: 2. Dynamic measurement on a polyarylate with low optical anisotropy. Polymer, 1997, 38, 1029-1034.	1.8	15

#	Article	IF	Citations
127	Strain-induced birefringence and molecular structure of glassy polymers. Polymer, 1997, 38, 1215-1220.	1.8	27
128	Role of Polymer Chain Flexibility on the Viscoelasticity of Amorphous Polymers around the Glass Transition Zone. Macromolecules, 1996, 29, 1595-1599.	2.2	107
129	Dynamic Birefringence of Vinyl Polymers. Macromolecules, 1996, 29, 6240-6245.	2.2	42
130	Limitation of Stress-Optical Rule for Polymeric Liquids. Macromolecules, 1996, 29, 7622-7623.	2.2	10
131	Damping Function of the Shear Relaxation Modulus and the Chain Retraction Process of Entangled Polymers. Macromolecules, 1996, 29, 3611-3614.	2.2	15
132	On the Strain-Induced Birefringence of Glassy Polymers. Polymer Journal, 1996, 28, 76-79.	1.3	11
133	A Simple Evaluation Method of Stress-Optical Coefficient of Polymers. Nihon Reoroji Gakkaishi, 1996, 24, 129-132.	0.2	14
134	Dynamic Birefringence of Amorphous Polyolefins II. Measurements on Polymers Containing Five-Membered Ring in Main Chain. Polymer Journal, 1995, 27, 943-950.	1,3	22
135	Viscoelasticity and birefringence of polyisoprene. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 417-424.	2.4	33
136	Viscoelasticity and birefringence of polyisobutylene. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1409-1416.	2.4	20
137	Studies on Sub-Relaxation of a Series of Methacrylate Polymers by Dynamic Birefringence Measurements Nihon Reoroji Gakkaishi, 1995, 23, 13-19.	0.2	11
138	Molecular Motions and Viscoelasticity of Amorphous Polymers near Tg. Macromolecules, 1995, 28, 3425-3433.	2.2	94
139	Molecular Interpretation of Dynamic Birefringence and Viscoelasticity of Amorphous Polymers. Macromolecules, 1995, 28, 3625-3630.	2.2	39
140	Dynamic Light Scattering and Dynamic Viscoelasticity of Poly(vinyl alcohol) in Aqueous Borax Solutions. 1. Concentration Effect. Macromolecules, 1995, 28, 2339-2344.	2.2	92
141	Viscoelasticity and Birefringence of Poly (2-vinylnaphthalene). Nihon Reoroji Gakkaishi, 1994, 22, 129-134.	0.2	11
142	Phase separation kinetics in silica sol-gel system containing polyethylene oxide. I. Initial stage. Journal of Sol-Gel Science and Technology, 1994, 2, 227-231.	1,1	16
143	In situ observation of phase separation processes in gelling alkoxy-derived silica system by light scattering method. Journal of Sol-Gel Science and Technology, 1994, 3, 169-188.	1.1	33
144	Viscoelasticity of some engineering plastics analyzed with the modified stress-optical rule. Polymer Engineering and Science, 1994, 34, 135-140.	1.5	27

#	Article	IF	CITATIONS
145	Shear and normal stresses of a poly(vinyl alcohol)/sodium borate aqueous solution at the start of shear flow. Journal of Non-Newtonian Fluid Mechanics, 1994, 54, 109-120.	1.0	20
146	Dynamic birefringence of amorphous polymers. Journal of Non-Crystalline Solids, 1994, 172-174, 838-849.	1.5	31
147	Dynamic Birefringence of Amorphous Polyolefins I. Measurements on Poly[1-ethyl-5-methyl-octahydro-4,7-methano-1H-indene-12,3-diyl]. Polymer Journal, 1994, 26, 133-139.	1.3	22
148	Minor Special Issue of Polymeric Materials. Viscoelasticity and Birefringence of PS/PC Blend and Graft Copolymer Zairyo/Journal of the Society of Materials Science, Japan, 1994, 43, 1546-1552.	0.1	0
149	Viscoelasticity and birefringence of bisphenol A polycarbonate. Polymer, 1993, 34, 1661-1666.	1.8	14
150	Viscoelasticity and Birefringence of Bisphenol A Polycarbonate. Nihon Reoroji Gakkaishi, 1993, 21, 86-90.	0.2	3
151	Birefringence of amorphous polymers. V. Dynamic measurements on poly(αâ€methyl styrene) and polycarbonate. Journal of Rheology, 1992, 36, 1737-1755.	1.3	34
152	Birefringence of amorphous polymers. 4. Large deformation of polystyrene near its glass transition temperature. Macromolecules, 1992, 25, 3413-3415.	2.2	32
153	Large deformation of polycarbonate near the glass transition temperature. Macromolecules, 1992, 25, 7069-7070.	2.2	28
154	Birefringence of amorphous polymers. II. Dynamic measurement and relaxation measurement. Journal of Polymer Science, Part B: Polymer Physics, 1992, 30, 409-414.	2.4	41
155	Self-diffusion and viscoelasticity of linear polystyrene in entangled solutions. Macromolecules, 1991, 24, 1648-1654.	2.2	36
156	Birefringence of amorphous polymers. 1. Dynamic measurement on polystyrene. Macromolecules, 1991, 24, 5670-5675.	2.2	199
157	An Apparatus for Dynamic Birefringence Measurements. Nihon Reoroji Gakkaishi, 1991, 19, 93-97.	0.2	19
158	Some Phenomenological Relations for Strain-Induced Birefringence of Amorphous Polymers. Nihon Reoroji Gakkaishi, 1991, 19, 130-132.	0.2	6
159	Self-diffusion of Micelles and Viscoelasticity of Aqueous Detergent Solutions. Nihon Reoroji Gakkaishi, 1991, 19, 45-49.	0.2	6
160	Birefringence of Amorphous Polymers III. Nihon Reoroji Gakkaishi, 1991, 19, 220-222.	0.2	10
161	Diffusion and Viscoelasticity of Polystyrene-Di butyl Phthalate Solutions. Nihon Reoroji Gakkaishi, 1991, 19, 181-191.	0.2	0
162	Tracer diffusion of linear polystyrene in entanglement networks. Macromolecules, 1990, 23, 659-664.	2.2	42

#	Article	IF	CITATIONS
163	Self-Diffusion and Viscoelasticity of Concentrated Solutions of Linear Polystyrene in Dibutyl Phthalate. Nihon Reoroji Gakkaishi, 1990, 18, 133-139.	0.2	1
164	Viscoelastic and Flow Birefringence Studies of Compatible Polymer Blends. Nihon Reoroji Gakkaishi, 1990, 18, 39-43.	0.2	0
165	Self diffusion of polymers in the concentrated regime. Part 2. Self diffusion and tracer-diffusion coefficient and viscosity of concentrated solutions of linear polystyrenes in dibutyl phthalate. Macromolecules, 1989, 22, 3793-3798.	2.2	54
166	Self-diffusion of polymers in block copolymer solution. Macromolecules, 1989, 22, 494-496.	2.2	4
167	Hydrodynamic and topological interactions in sedimentation of poly(methyl methacrylate) in semidilute solutions of polystyrene in thiophenol. Macromolecules, 1988, 21, 1502-1508.	2.2	7
168	Comparison of the sedimentation data with the Hess theory and with self-diffusion coefficient data of polystyrene in the semidilute regime and in melts. Macromolecules, 1988, 21, 1509-1513.	2.2	3
169	Self Diffusion of Polymers in the Concentrated Regime I. Temperature Dependence of the Self Diffusion Coefficient and the Steady Viscosity of Polystyrene in Dibutyl Phthalate. Polymer Journal, 1988, 20, 875-881.	1.3	6
170	Comparison of the Self Diffusion Coefficient of Polystyrene in Solution Estimated by Forced Rayleigh Scattering and Fluorescence Recovery after Photobleaching. Polymer Journal, 1988, 20, 869-874.	1.3	6
171	Measurements of Self Diffusion Coefficient with Fluorescence Recovery after Pattern Photo-Bleaching and Forced Rayleigh Scattering Methods. Nihon Reoroji Gakkaishi, 1988, 16, 72-80.	0.2	5
172	Diffusion measurements of poly(methyl methacrylate) in semidilute solutions of polystyrene in thiophenol with an analytical ultracentrifuge. Dynamics of polymer-polymer-solvent ternary systems. 3. Macromolecules, 1986, 19, 2305-2306.	2,2	5
173	Dynamics of polymer-polymer-solvent ternary systems. 2. Diffusion and sedimentation of poly(methyl) Tj ETQq1 2516-2522.	l 0.78431 2.2	4 rgBT /Over 20