Thomas Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7149466/publications.pdf

Version: 2024-02-01

49 papers

2,889 citations

236925 25 h-index 206112 48 g-index

54 all docs

54 docs citations

54 times ranked 2692 citing authors

#	Article	IF	CITATIONS
1	Excision and reinsertion of <i>Ac macrotransposons</i> i> in maize. Genetics, 2022, 221, .	2.9	4
2	A Tutorial of EDTA: Extensive De Novo TE Annotator. Methods in Molecular Biology, 2021, 2250, 55-67.	0.9	22
3	Rapid Detection of Transposon-Induced Genome Rearrangements. Methods in Molecular Biology, 2021, 2250, 131-139.	0.9	3
4	Transposon-induced inversions activate gene expression in the maize pericarp. Genetics, 2021, 218, .	2.9	7
5	Ectopic Expression of a Maize Gene Is Induced by Composite Insertions Generated Through Alternative Transposition. Genetics, 2020, 216, 1039-1049.	2.9	9
6	Small RNA-Mediated <i>De Novo </i> Silencing of <i>Ac/Ds </i> Transposons Is Initiated by Alternative Transposition in Maize. Genetics, 2020, 215, 393-406.	2.9	11
7	TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome. Molecular Plant, 2019, 12, 447-460.	8.3	90
8	Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 2019, 20, 275.	8.8	579
9	Evolutionary Impacts of Alternative Transposition. , 2018, , 113-130.		6
10	Maize Transposon Storm Kicks up a <i>White Cap</i> . Genetics, 2017, 206, 87-89.	2.9	1
11	Generation and Analysis of Transposon Ac/Ds-Induced Chromosomal Rearrangements in Rice Plants. Methods in Molecular Biology, 2016, 1469, 49-61.	0.9	4
12	Genes and Small RNA Transcripts Exhibit Dosage-Dependent Expression Pattern in Maize Copy-Number Alterations. Genetics, 2016, 203, 1133-1147.	2.9	12
13	Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize $\langle i \rangle p1 \langle i \rangle$ Locus. Genetics, 2015, 201, 925-935.	2.9	13
14	Transposition-mediated DNA re-replication in maize. ELife, 2014, 3, e03724.	6.0	21
15	Generation of Tandem Direct Duplications by Reversed-Ends Transposition of Maize Ac Elements. PLoS Genetics, 2013, 9, e1003691.	3.5	43
16	Isolation of Sequences Flanking Ac Insertion Sites by Ac Casting. Methods in Molecular Biology, 2013, 1057, 117-122.	0.9	8
17	Survey of Natural and Transgenic Gene Markers Used to Monitor Transposon Activity. Methods in Molecular Biology, 2013, 1057, 43-58.	0.9	0
18	A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice. Theoretical and Applied Genetics, 2012, 125, 1449-1462.	3.6	20

#	Article	IF	CITATIONS
19	Transposable Elements as Catalysts for Chromosome Rearrangements. Methods in Molecular Biology, 2011, 701, 315-326.	0.9	41
20	Transposon Ac/Ds -induced chromosomal rearrangements at the rice OsRLG5 locus. Nucleic Acids Research, 2011, 39, e149-e149.	14.5	19
21	Genome Rearrangements in Maize Induced by Alternative Transposition of Reversed <i>Ac/Ds</i> Termini. Genetics, 2011, 188, 59-67.	2.9	47
22	Fusion of reverse-oriented Ds termini following abortive transposition in Arabidopsis: implications for the mechanism of Ac/Ds transposition. Plant Cell Reports, 2010, 29, 413-417.	5.6	9
23	Spatial Configuration of Transposable Element <i>Ac</i> Termini Affects Their Ability to Induce Chromosomal Breakage in Maize Â. Plant Cell, 2010, 22, 744-754.	6.6	24
24	Alternative <i>Ac/Ds</i> transposition induces major chromosomal rearrangements in maize. Genes and Development, 2009, 23, 755-765.	5.9	61
25	Reversed end Ds element: a novel tool for chromosome engineering in Arabidopsis. Plant Molecular Biology, 2008, 68, 399-411.	3.9	14
26	Epigenetic Modifications of Distinct Sequences of the p1 Regulatory Gene Specify Tissue-Specific Expression Patterns in Maize. Genetics, 2007, 175, 1059-1070.	2.9	35
27	Comparative Structural and Functional Characterization of Sorghum and Maize Duplications Containing Orthologous Myb Transcription Regulators of 3-Deoxyflavonoid Biosynthesis. Plant Molecular Biology, 2006, 60, 185-199.	3.9	47
28	Transposition of Reversed Ac Element Ends Generates Novel Chimeric Genes in Maize. PLoS Genetics, 2006, 2, e164.	3.5	53
29	Gene Conversion Between Direct Noncoding Repeats Promotes Genetic and Phenotypic Diversity at a Regulatory Locus of Zea mays (L.). Genetics, 2006, 174, 753-762.	2.9	6
30	Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation. Plant Biotechnology Journal, 2005, 3, 225-235.	8.3	28
31	Comparisons of Maize pericarp color1 Alleles Reveal Paralogous Gene Recombination and an Organ-Specific Enhancer Region. Plant Cell, 2005, 17, 903-914.	6.6	46
32	A Segmental Deletion Series Generated by Sister-Chromatid Transposition of Ac Transposable Elements in Maize. Genetics, 2005, 171, 333-344.	2.9	44
33	Transposition of Reversed Ac Element Ends Generates Chromosome Rearrangements in Maize. Genetics, 2004, 167, 1929-1937.	2.9	80
34	A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. Plant Molecular Biology, 2003, 52, 1-15.	3.9	80
35	Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plants. Transgenic Research, 2003, 12, 137-154.	2.4	20
36	The Maize Unstable factor for orange1 Is a Dominant Epigenetic Modifier of a Tissue Specifically Silent Allele of pericarp color1. Genetics, 2003, 163, 1135-1146.	2.9	40

#	Article	IF	Citations
37	Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated. Plant Journal, 2001, 27, 467-478.	5.7	56
38	Transgene-Induced Silencing Identifies Sequences Involved in the Establishment of Paramutation of the Maize p1 Gene. Plant Cell, 2001, 13, 319.	6.6	2
39	Transgene-Induced Silencing Identifies Sequences Involved in the Establishment of Paramutation of the Maize p1 Gene. Plant Cell, 2001, 13, 319-335.	6.6	87
40	Complex structure of a maize Myb gene promoter: functional analysis in transgenic plants. Plant Journal, 2000, 22, 471-482.	5.7	69
41	A Segmental Gene Duplication Generated Differentially Expressed myb-Homologous Genes in Maize. Plant Cell, 2000, 12, 2311.	6.6	4
42	A Segmental Gene Duplication Generated Differentially Expressed myb-Homologous Genes in Maize. Plant Cell, 2000, 12, 2311-2322.	6.6	110
43	Hierarchical Patterns of Transgene Expression Indicate Involvement of Developmental Mechanisms in the Regulation of the Maize <i>P1-rr</i> Promoter. Genetics, 2000, 156, 839-846.	2.9	23
44	Ac Insertion Site Affects the Frequency of Transposon-Induced Homologous Recombination at the Maize p1 Locus. Genetics, 2000, 156, 2007-2017.	2.9	30
45	Characterization of the regulatory elements of the maize P-rr gene by transient expression assays. Plant Molecular Biology, 1999, 39, 11-19.	3.9	41
46	Genome Rearrangements by Nonlinear Transposons in Maize. Genetics, 1999, 153, 1403-1410.	2.9	89
47	Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Molecular Genetics and Genomics, 1994, 242, 1-8.	2.4	70
48	The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell, 1994, 76, 543-553.	28.9	644
49	Isolation and molecular analysis of the maize P locus. Molecular Genetics and Genomics, 1989, 219, 225-234.	2.4	109