List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7148337/publications.pdf Version: 2024-02-01

		4120	5519
201	28,204	87	163
papers	citations	h-index	g-index
	010		
213	213	213	19303
all docs	docs citations	times ranked	citing authors

Μλελτοςμι Τλκειςμι

#	Article	IF	CITATIONS
1	CAMSAP3 is required for mTORC1-dependent ependymal cell growth and lateral ventricle shaping in mouse brains. Development (Cambridge), 2021, 148, .	1.2	8
2	Intercellular and intracellular cilia orientation is coordinated by CELSR1 and CAMSAP3 in oviduct multi-ciliated cells. Journal of Cell Science, 2021, 134, .	1.2	14
3	Cyst formation in proximal renal tubules caused by dysfunction of the microtubule minus-end regulator CAMSAP3. Scientific Reports, 2021, 11, 5857.	1.6	7
4	Tracheal motile cilia in mice require CAMSAP3 for the formation of central microtubule pair and coordinated beating. Molecular Biology of the Cell, 2021, 32, ar12.	0.9	7
5	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	16.1	1,195
6	Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. Journal of Cell Biology, 2020, 219, .	2.3	45
7	Historical review of the discovery of cadherin, in memory of Tokindo Okada. Development Growth and Differentiation, 2018, 60, 3-13.	0.6	13
8	Multiple functions of α-catenin beyond cell adhesion regulation. Current Opinion in Cell Biology, 2018, 54, 24-29.	2.6	22
9	Loss of CAMSAP3 promotes EMT via the modification of microtubule-Akt machinery. Journal of Cell Science, 2018, 131, .	1.2	24
10	CAMSAP3 maintains neuronal polarity through regulation of microtubule stability. Proceedings of the United States of America, 2018, 115, 9750-9755.	3.3	72
11	Abstract 2014: CAMSAP3, a tubulin minus-end binding protein, attenuates epithelial-to-mesenchymal transition and alters microtubule dynamic in non-small cell lung cancer. , 2018, , .		Ο
12	CAMSAP3-dependent microtubule dynamics regulates Golgi assembly in epithelial cells. Journal of Genetics and Genomics, 2017, 44, 39-49.	1.7	9
13	CAMSAP3 accumulates in the pericentrosomal area and accompanies microtubules release from the centrosome via katanin. Journal of Cell Science, 2017, 130, 1709-1715.	1.2	19
14	Catenins Steer Cell Migration via Stabilization of Front-Rear Polarity. Developmental Cell, 2017, 43, 463-479.e5.	3.1	31
15	Dachsous1–Fat4 Signaling Controls Endothelial Cell Polarization During Lymphatic Valve Morphogenesis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1732-1735.	1.1	31
16	Loss of X-linked Protocadherin-19 differentially affects the behavior of heterozygous female and hemizygous male mice. Scientific Reports, 2017, 7, 5801.	1.6	42
17	Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells. Nature Communications, 2017, 8, 1834.	5.8	36
18	Patronin Takes a Shot at Polarity. Developmental Cell, 2016, 38, 12-13.	3.1	2

#	Article	IF	CITATIONS
19	DAAM1 stabilizes epithelial junctions by restraining WAVE complex–dependent lateral membrane motility. Journal of Cell Biology, 2016, 215, 559-573.	2.3	28
20	Organization of Non-centrosomal Microtubules in Epithelial Cells. Cell Structure and Function, 2016, 41, 127-135.	0.5	37
21	CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proceedings of the United States of America, 2016, 113, 332-337.	3.3	120
22	Emerging roles of protocadherins: from self-avoidance to enhancement of motility. Journal of Cell Science, 2015, 128, 1455-64.	1.2	73
23	The adherens junctions control susceptibility to <i>Staphylococcus aureus</i> α-toxin. Proceedings of the United States of America, 2015, 112, 14337-14342.	3.3	68
24	Minus end–directed motor KIFC3 suppresses E-cadherin degradation by recruiting USP47 to adherens junctions. Molecular Biology of the Cell, 2014, 25, 3851-3860.	0.9	27
25	Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nature Reviews Molecular Cell Biology, 2014, 15, 397-410.	16.1	479
26	Giant cadherins Fat and Dachsous self-bend to organize properly spaced intercellular junctions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16011-16016.	3.3	53
27	Protocadherin-17 Mediates Collective Axon Extension by Recruiting Actin Regulator Complexes to Interaxonal Contacts. Developmental Cell, 2014, 30, 673-687.	3.1	85
28	An Autoinhibited Structure of α-Catenin and Its Implications for Vinculin Recruitment to Adherens Junctions. Journal of Biological Chemistry, 2013, 288, 15913-15925.	1.6	110
29	Nonâ€centrosomal microtubules regulate <scp>F</scp> â€actin organization through the suppression of <scp>GEF</scp> â€ <scp>H</scp> 1 activity. Genes To Cells, 2013, 18, 387-396.	0.5	35
30	Cadherins in Brain Morphogenesis and Wiring. Physiological Reviews, 2012, 92, 597-634.	13.1	251
31	Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20029-20034.	3.3	134
32	Planar Cell Polarity Links Axes of Spatial Dynamics in Neural-Tube Closure. Cell, 2012, 149, 1084-1097.	13.5	448
33	Loss of N-Cadherin from the Endothelium Causes Stromal Edema and Epithelial Dysgenesis in the Mouse Cornea. , 2012, 53, 7183.		20
34	Nectins localize Willin to cell–cell junctions. Genes To Cells, 2012, 17, 387-397.	0.5	22
35	Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nature Cell Biology, 2011, 13, 860-866.	4.6	111
36	Nectins Establish a Checkerboard-Like Cellular Pattern in the Auditory Epithelium. Science, 2011, 333, 1144-1147.	6.0	120

#	Article	IF	CITATIONS
37	Self-Organization of Animal Tissues: Cadherin-Mediated Processes. Developmental Cell, 2011, 21, 24-26.	3.1	66
38	The role of cadherin in barrel net formation in the mouse somatosensory cortex. Neuroscience Research, 2011, 71, e132.	1.0	0
39	Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. Journal of Cell Biology, 2011, 194, 643-656.	2.3	131
40	Structural and functional diversity of cadherin at the adherens junction. Journal of Cell Biology, 2011, 193, 1137-1146.	2.3	203
41	Accidental encounters: the chance to solve a mystery. Nature Cell Biology, 2010, 12, 2-2.	4.6	1
42	Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. Journal of Cell Biology, 2010, 189, 691-700.	2.3	98
43	Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. Journal of Experimental Medicine, 2010, 207, i19-i19.	4.2	0
44	Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. Journal of Cell Biology, 2009, 185, 959-967.	2.3	72
45	Dendrites of cerebellar granule cells correctly recognize their target axons for synaptogenesis in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12782-12787.	3.3	13
46	Adherens Junction: Molecular Architecture and Regulation. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002899-a002899.	2.3	455
47	03-P120 Fat4 and Dachsous1 regulate the apical membrane organization in the mouse cerebral cortex. Mechanisms of Development, 2009, 126, S102.	1.7	0
48	Chapter 2 Remodeling of the Adherens Junctions During Morphogenesis. Current Topics in Developmental Biology, 2009, 89, 33-54.	1.0	139
49	Cadherins in neuronal morphogenesis and function. Development Growth and Differentiation, 2008, 50, S119-30.	0.6	89
50	Anchorage of Microtubule Minus Ends to Adherens Junctions Regulates Epithelial Cell-Cell Contacts. Cell, 2008, 135, 948-959.	13.5	394
51	EPLIN mediates linkage of the cadherin–catenin complex to F-actin and stabilizes the circumferential actin belt. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13-19.	3.3	356
52	Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development (Cambridge), 2008, 135, 1493-1502.	1.2	263
53	Contact-dependent promotion of cell migration by the OL-protocadherin–Nap1 interaction. Journal of Cell Biology, 2008, 182, 395-410.	2.3	112
54	Cadherin-8 Is Required for the First Relay Synapses to Receive Functional Inputs from Primary Sensory Afferents for Cold Sensation. Journal of Neuroscience, 2007, 27, 3466-3476.	1.7	83

#	Article	IF	CITATIONS
55	The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. Journal of Cell Science, 2007, 120, 2498-2506.	1.2	288
56	Requirement for ERK MAP kinase in mouse preimplantation development. Development (Cambridge), 2007, 134, 2751-2759.	1.2	33
57	Cornichon-like Protein Facilitates Secretion of HB-ECF and Regulates Proper Development of Cranial Nerves. Molecular Biology of the Cell, 2007, 18, 1143-1152.	0.9	22
58	N-cadherin mediates cortical organization in the mouse brain. Developmental Biology, 2007, 304, 22-33.	0.9	275
59	NMDA-Receptor Activation Induces Calpain-Mediated Î ² -Catenin Cleavages for Triggering Gene Expression. Neuron, 2007, 53, 387-397.	3.8	132
60	Cadherin-11 in Synovial Lining Formation and Pathology in Arthritis. Science, 2007, 315, 1006-1010.	6.0	355
61	Cadherin-11 regulates synovial fibroblast behavior in health and disease. Arthritis Research and Therapy, 2007, 9, P22.	1.6	Ο
62	Temporal and spatial expression profiles of the Fat3 protein, a giant cadherin molecule, during mouse development. Developmental Dynamics, 2007, 236, 534-543.	0.8	36
63	Basal-to-apical cadherin flow at cell junctions. Nature Cell Biology, 2007, 9, 92-98.	4.6	199
64	OL-protocadherin is essential for growth of striatal axons and thalamocortical projections. Nature Neuroscience, 2007, 10, 1151-1159.	7.1	142
65	The cadherin superfamily in neuronal connections and interactions. Nature Reviews Neuroscience, 2007, 8, 11-20.	4.9	369
66	p120-catenin regulates microtubule dynamics and cell migration in a cadherin-independent manner. Genes To Cells, 2007, 12, 827-839.	0.5	55
67	αN-catenin deficiency causes defects in axon migration and nuclear organization in restricted regions of the mouse brain. Developmental Dynamics, 2006, 235, 2559-2566.	0.8	33
68	αN-catenin deficiency causes defects in axon migration and nuclear organization in restricted regions of the mouse brain. Developmental Dynamics, 2006, 235, spc1-spc1.	0.8	0
69	Cadherin is required for dendritic morphogenesis and synaptic terminal organization of retinal horizontal cells. Development (Cambridge), 2006, 133, 4085-4096.	1.2	63
70	Shoichiro Tsukita: a life exploring the molecular architecture of the tight junction. Journal of Cell Biology, 2006, 172, 321-323.	2.3	6
71	Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. Journal of Cell Biology, 2006, 175, 135-146.	2.3	201
72	Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. Journal of Cell Biology, 2006, 174, 141-151.	2.3	96

#	Article	IF	CITATIONS
73	Looking for cell-cell adhesion molecules: a cadherin story. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2005, 81, 321-328.	1.6	1
74	Synaptic contact dynamics controlled by cadherin and catenins. Trends in Cell Biology, 2005, 15, 216-221.	3.6	157
75	New insights into Fat cadherins. Journal of Cell Science, 2005, 118, 2347-2353.	1.2	148
76	Wnt2b inhibits differentiation of retinal progenitor cells in the absence of Notch activity by downregulating the expression of proneural genes. Development (Cambridge), 2005, 132, 2759-2770.	1.2	112
77	Distribution of OL-protocadherin in axon fibers in the developing chick nervous system. Molecular Brain Research, 2005, 134, 294-308.	2.5	24
78	Mammalian Fat1 cadherin regulates actin dynamics and cell–cell contact. Journal of Cell Biology, 2004, 165, 517-528.	2.3	143
79	Stability of dendritic spines and synaptic contacts is controlled by αN-catenin. Nature Neuroscience, 2004, 7, 357-363.	7.1	231
80	Identification of a nonchordate-type classic cadherin in vertebrates: Chicken Hz-cadherin is expressed in horizontal cells of the neural retina and contains a nonchordate-specific domain complex. Developmental Dynamics, 2004, 229, 899-906.	0.8	29
81	Regulation of Dendritic Maintenance and Growth by a Mammalian 7-Pass Transmembrane Cadherin. Developmental Cell, 2004, 7, 205-216.	3.1	120
82	Discovery and characterization of the cadherin family of cell adhesion molecules. An interview with Masatoshi Takeichi International Journal of Developmental Biology, 2004, 48, 387-396.	0.3	5
83	Identification of the laminar-inducing factor: Wnt-signal from the anterior rim induces correct laminar formation of the neural retina in vitro. Developmental Biology, 2003, 260, 414-425.	0.9	65
84	Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development (Cambridge), 2003, 130, 587-598.	1.2	190
85	Genetic Dissection of Cadherin Function during Nephrogenesis. Molecular and Cellular Biology, 2002, 22, 1474-1487.	1.1	88
86	DN-Cadherin Is Required for Spatial Arrangement of Nerve Terminals and Ultrastructural Organization of Synapses. Molecular and Cellular Neurosciences, 2002, 19, 375-388.	1.0	65
87	Homeobox Gene Hoxa3 Is Essential for the Formation of the Carotid Body in the Mouse Embryos. Developmental Biology, 2002, 247, 197-209.	0.9	58
88	Control of Actin Reorganization by Slingshot, a Family of Phosphatases that Dephosphorylate ADF/Cofilin. Cell, 2002, 108, 233-246.	13.5	601
89	Non-overlapping expression of Olig3 and Olig2 in the embryonic neural tube. Mechanisms of Development, 2002, 113, 169-174.	1.7	68
90	Cadherin Regulates Dendritic Spine Morphogenesis. Neuron, 2002, 35, 77-89.	3.8	454

#	Article	IF	CITATIONS
91	Forked end: a novel transmembrane protein involved in neuromuscular specificity indrosophila identified by gain-of-function screening. Journal of Neurobiology, 2002, 51, 205-214.	3.7	10
92	Differential expression of the seven-pass transmembrane cadherin genesCelsr1-3 and distribution of the Celsr2 protein during mouse development. Developmental Dynamics, 2002, 223, 321-332.	0.8	81
93	Restoration of E-cadherin-based cell–cell adhesion by overexpression of nectin in HSC-39 cells, a human signet ring cell gastric cancer cell line. Oncogene, 2002, 21, 4108-4119.	2.6	20
94	Mechanisms of morphogenetic cell assembly Keio Journal of Medicine, 2002, 51, 72-76.	0.5	1
95	Hoxa3 Regulates Integration of Glossopharyngeal Nerve Precursor Cells. Developmental Biology, 2001, 240, 15-31.	0.9	30
96	Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1 , the founder of a novel gene superfamily. Genes To Cells, 2001, 6, 313-325.	0.5	107
97	Targeted Disruption of Cadherin-11 Leads to a Reduction in Bone Density in Calvaria and Long Bone Metaphyses. Journal of Bone and Mineral Research, 2001, 16, 1265-1271.	3.1	80
98	Asymmetric colocalization of Flamingo, a seven-pass transmembrane cadherin, and Dishevelled in planar cell polarization. Current Biology, 2001, 11, 859-863.	1.8	163
99	Requirement of the juxtamembrane domain of the cadherin cytoplasmic tail for morphogenetic cell rearrangement during myotome development. Journal of Cell Biology, 2001, 155, 1297-1306.	2.3	26
100	Morphologic fate of diencephalic prosomeres and their subdivisions revealed by mapping cadherin expression. , 2000, 421, 481-514.		106
101	Functional dissection ofdrosophila capricious: its novel roles in neuronal pathfinding and selective synapse formation. , 2000, 42, 104-116.		31
102	Characterization of a mutant E-cadherin protein encoded by a mutant gene frequently seen in diffuse-type human gastric carcinoma. International Journal of Cancer, 2000, 88, 579-583.	2.3	25
103	Blockade of cadherin-6B activity perturbs the distribution of PSD-95 family proteins in retinal neurones. Genes To Cells, 2000, 5, 309-318.	0.5	23
104	Loss of Cadherin-11 Adhesion Receptor Enhances Plastic Changes in Hippocampal Synapses and Modifies Behavioral Responses. Molecular and Cellular Neurosciences, 2000, 15, 534-546.	1.0	151
105	Patterning of cell assemblies regulated by adhesion receptors of the cadherin superfamily. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 885-890.	1.8	74
106	Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes and Development, 2000, 14, 1169-1180.	2.7	504
107	p120ctn Acts as an Inhibitory Regulator of Cadherin Function in Colon Carcinoma Cells. Journal of Cell Biology, 1999, 145, 551-562.	2.3	216
108	Flamingo, a Seven-Pass Transmembrane Cadherin, Regulates Planar Cell Polarity under the Control of Frizzled. Cell, 1999, 98, 585-595.	13.5	640

#	Article	IF	CITATIONS
109	Adhesive Subdivisions Intrinsic to the Epithelial Somites. Developmental Biology, 1999, 215, 182-189.	0.9	107
110	Cadherin-6 in the developing mouse brain: Expression along restricted connection systems and synaptic localization suggest a potential role in neuronal circuitry. Developmental Dynamics, 1998, 211, 338-351.	0.8	113
111	Cadherin expression in the retina and retinofugal pathways of the chicken embryo. , 1998, 396, 20-38.		93
112	Cytoskeletal reorganization by soluble Wntâ€3a protein signalling. Genes To Cells, 1998, 3, 659-670.	0.5	240
113	Dynamic Behavior of the Cadherin-Based Cell–Cell Adhesion System duringDrosophilaGastrulation. Developmental Biology, 1998, 203, 435-450.	0.9	218
114	Cadherinâ€Dependent Cell ell Adhesion. Current Protocols in Cell Biology, 1998, 00, Unit 9.3.	2.3	15
115	Drosophila Synapse Formation: Regulation by Transmembrane Protein with Leu-Rich Repeats, CAPRICIOUS. Science, 1998, 280, 2118-2121.	6.0	108
116	Cytoplasmic Regulation of the Movement of E-Cadherin on the Free Cell Surface as Studied by Optical Tweezers and Single Particle Tracking: Corralling and Tethering by the Membrane Skeleton. Journal of Cell Biology, 1998, 140, 1227-1240.	2.3	221
117	α-Catenin-Vinculin Interaction Functions to Organize the Apical Junctional Complex in Epithelial Cells. Journal of Cell Biology, 1998, 142, 847-857.	2.3	324
118	Precocious Mammary Gland Development in P-Cadherin–deficient Mice. Journal of Cell Biology, 1997, 139, 1025-1032.	2.3	232
119	Accumulation of Armadillo Induced by Wingless, Dishevelled, and Dominant-negative Zeste-white 3 Leads to Elevated DE-cadherin inDrosophila Clone 8 Wing Disc Cells. Journal of Biological Chemistry, 1997, 272, 25243-25251.	1.6	56
120	Roles for Cadherins in Patterning of the Developing Brain. Developmental Neuroscience, 1997, 19, 86-87.	1.0	23
121	11 Selective Aggregation Assays for Embryonic Brain Cells and Cell lines. Current Topics in Developmental Biology, 1997, 36, 197-210.	1.0	5
122	Neuronal Circuits Are Subdivided by Differential Expression of Type-II Classic Cadherins in Postnatal Mouse Brains. Molecular and Cellular Neurosciences, 1997, 9, 433-447.	1.0	262
123	Developmental Defects in Mouse Embryos Lacking N-Cadherin. Developmental Biology, 1997, 181, 64-78.	0.9	661
124	Cadherin-6 Expression Transiently Delineates Specific Rhombomeres, Other Neural Tube Subdivisions, and Neural Crest Subpopulations in Mouse Embryos. Developmental Biology, 1997, 183, 183-194.	0.9	169
125	M-Spondin, a Novel ECM Protein Highly Homologous to Vertebrate F-Spondin, Is Localized at the Muscle Attachment Sites in theDrosophilaEmbryo. Developmental Biology, 1997, 186, 165-176.	0.9	58
126	A Potential Role of R-cadherin in Striated Muscle Formation. Developmental Biology, 1997, 187, 55-70.	0.9	67

#	Article	IF	CITATIONS
127	Axon Patterning Requires D N-cadherin, a Novel Neuronal Adhesion Receptor, in the Drosophila Embryonic CNS. Neuron, 1997, 19, 77-89.	3.8	279
128	Developmental changes in the subcellular localization of R-cadherin in chick retinal pigment epithelium. Histochemistry and Cell Biology, 1997, 108, 35-43.	0.8	20
129	N-cadherin is crucial for heart formation in the chick embryo. Development Growth and Differentiation, 1997, 39, 451-455.	0.6	26
130	Phenotypic analysis of null mutants for DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion and cytoskeletal organization. Genes To Cells, 1997, 2, 29-40.	0.5	71
131	Suppression of invasive ability of highly metastatic rat prostate cancer by introduction of human chromosome 8. , 1997, 31, 14-20.		15
132	Cloning and expression analysis of cadherin-10 in the CNS of the chicken embryo. , 1997, 209, 269-285.		32
133	Cadherins in the Developing Central Nervous System: An Adhesive Code for Segmental and Functional Subdivisions. Developmental Biology, 1996, 180, 413-423.	0.9	242
134	αN-catenin expression in the normal and regenerating chick sciatic nerve. Journal of Neurocytology, 1996, 25, 615-624.	1.6	9
135	Expression of cadherin-11 delineates boundaries, neuromeres, and nuclei in the developing mouse brain. , 1996, 206, 455-462.		63
136	Drosophila α-Catenin and E-cadherin Bind to Distinct Regions of Drosophila Armadillo. Journal of Biological Chemistry, 1996, 271, 32411-32420.	1.6	90
137	Altered expression and function of E-cadherin in cervical intraepithelial neoplasia and invasive squamous cell carcinoma. Journal of Pathology, 1995, 176, 151-159.	2.1	128
138	Delayed Assembly of Desmosomes in Keratinocytes with Disrupted Classic-Cadherin-Mediated Cell Adhesion by a Dominant Negative Mutant. Journal of Investigative Dermatology, 1995, 104, 27-32.	0.3	66
139	Cadherin-11 Expressed in Association with Mesenchymal Morphogenesis in the Head, Somite, and Limb Bud of Early Mouse Embryos. Developmental Biology, 1995, 169, 347-358.	0.9	237
140	Fetal Brain Subdivisions Defined by R- and E-Cadherin Expressions: Evidence for the Role of Cadherin Activity in Region-Specific, Cell–Cell Adhesion. Developmental Biology, 1995, 172, 466-478.	0.9	149
141	Loss of membranous E-cadherin expression in pancreatic cancer: Correlation with lymph node metastasis, high grade, and advanced stage. Journal of Pathology, 1994, 174, 243-248.	2.1	200
142	Complex Cell Type-Specific Transcriptional Regulation by the Promoter and an Intron of the Mouse P-Cadherin Gene. (P-cadherin/cell adhesion molecule/transcriptional regulation). Development Growth and Differentiation, 1994, 36, 509-519.	0.6	8
143	Mouse αN-Catenin: Two Isoforms, Specific Expression in the Nervous System, and Chromosomal Localization of the Gene. Developmental Biology, 1994, 163, 75-85.	0.9	72
144	A Drosophila Homolog of Cadherin Associated with Armadillo and Essential for Embryonic Cell-Cell Adhesion. Developmental Biology, 1994, 165, 716-726.	0.9	403

#	Article	IF	CITATIONS
145	Purification and spectroscopic characterization of a recombinant amino-terminal polypeptide fragment of mouse epithelial cadherin. FEBS Letters, 1994, 352, 318-322.	1.3	23
146	Ectopic expression of connectin reveals a repulsive function during growth cone guidance and synapse formation. Neuron, 1994, 13, 525-539.	3.8	132
147	Tyrosine Phosphorylation of Î ² -Catenin and Plakoglobin Enhanced by Hepatocyte Growth Factor and Epidermal Growth Factor in Human Carcinoma Cells. Cell Adhesion and Communication, 1994, 1, 295-305.	1.7	402
148	N- and R-cadherin expression in the optic nerve of the chicken embryo. Glia, 1993, 8, 161-171.	2.5	80
149	Reexamination of the properties of epimorphin and its possible roles. Cell, 1993, 73, 426-427.	13.5	27
150	Effect of Hepatocyte Growth Factor on Cadherin-Mediated Cell-Cell Adhesion Cell Structure and Function, 1993, 18, 117-124.	0.5	40
151	Proto-oncogene ret Has Cadherin-like Repeats in the Extracellular Region Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1992, 68, 106-108.	1.6	3
152	Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell, 1992, 70, 293-301.	13.5	554
153	Epimorphin: A mesenchymal protein essential for epithelial morphogenesis. Cell, 1992, 69, 471-481.	13.5	229
154	E-cadherin expression in a particular subset of sensory neurons. Developmental Biology, 1992, 152, 242-254.	0.9	80
155	Immunohistochemical evaluation of E-cadherin adhesion molecule expression in human gastric cancer. Virchows Archiv A, Pathological Anatomy and Histopathology, 1992, 421, 149-156.	1.4	124
156	R-cadherin: A novel Ca2+-dependent cell-cell adhesion molecule expressed in the retina. Neuron, 1991, 7, 69-79.	3.8	207
157	The 102 kd cadherin-associated protein: Similarity to vinculin and posttranscriptional regulation of expression. Cell, 1991, 65, 849-857.	13.5	499
158	Genomic organization and chromosomal mapping of the mouse P-cadherin gene. Nucleic Acids Research, 1991, 19, 4437-4441.	6.5	67
159	Interactions of Schwann cells with neurites and with other Schwann cells involve the calcium-dependent adhesion molecule, N-cadherin. Journal of Neurobiology, 1991, 22, 707-720.	3.7	54
160	Cadherin-mediated cell-cell adhesion and neurogenesis. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1990, 13, S92-S96.	0.0	18
161	Localization of specificity determining sites in cadherin cell adhesion molecules. Cell, 1990, 61, 147-155.	13.5	472
162	Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo. Developmental Biology, 1990, 138, 1-15.	0.9	172

MASATOSHI TAKEICHI

#	Article	IF	CITATIONS
163	Nerve growth cone migration onto Schwann cells involves the calcium-dependent adhesion molecule, N-cadherin. Developmental Biology, 1990, 138, 430-442.	0.9	101
164	Cadherins: A Molecular Family Important in Selective Cell-Cell Adhesion. Annual Review of Biochemistry, 1990, 59, 237-252.	5.0	1,239
165	Unstable Expression of E-Cadherin Adhesion Molecules in Metastatic Ovarian Tumor Cells. Japanese Journal of Cancer Research, 1989, 80, 459-463.	1.7	140
166	Expression Pattern of E- and P-Cadherin in Mouse Embryos and Uteri during the Periimplantation Period. (implantation/mouse embryo/cell adhesion molecules E-cadherin/P-cadherin). Development Growth and Differentiation, 1989, 31, 23-30.	0.6	37
167	Monoclonal antibodies to chicken iodopsin. Experimental Eye Research, 1989, 48, 281-293.	1.2	28
168	Cadherinâ€Mediated Specific Cell Adhesion and Animal Morphogenesis. Novartis Foundation Symposium, 1989, 144, 243-254.	1.2	6
169	Guidance of optic nerve fibres by N-cadherin adhesion molecules. Nature, 1988, 334, 62-64.	13.7	283
170	Exogenous δ-crystallin gene expression as probe for differentiation of teratocarcinoma stem cells. Cell Differentiation, 1988, 24, 139-147.	1.3	23
171	Identification of a gene family of cadherin cell adhesion molecules. Cell Differentiation and Development, 1988, 25, 91-94.	0.4	52
172	Expressed recombinant cadherins mediate cell sorting in model systems. Cell, 1988, 54, 993-1001.	13.5	633
173	Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron, 1988, 1, 289-295.	3.8	178
174	Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature, 1987, 329, 341-343.	13.7	730
175	Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Developmental Biology, 1987, 120, 215-227.	0.9	506
176	Cadherins: a molecular family essential for selective cell-cell adhesion and animal morphogenesis. Trends in Genetics, 1987, 3, 213-217.	2.9	146
177	N-linked oligosaccharides are not involved in the function of a cell-cell binding glycoprotein E-cadherin Cell Structure and Function, 1986, 11, 245-252.	0.5	172
178	Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature, 1986, 320, 447-449.	13.7	621
179	Molecular Basis for Teratocarcinoma Cell-Cell Adhesion. , 1986, 2, 373-388.		2
	Detection of the Initial Step of Mesenchymal Differentiation of Teratocarcinoma Cells Using the		

180 Monoclonal Antibody Eccd-11. (teratocarcinoma/cell-cell adhesion/mesenchymal) Tj ETQq0 0 0 rgBT /Overlock 10 T6.50 57 Tdb(differenti

#	Article	IF	CITATIONS
181	Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Developmental Biology, 1984, 101, 19-27.	0.9	308
182	Monoclonal antibody ECCD-1 inhibits intercellular communication in teratocarcinoma PCC3 cells. Experimental Cell Research, 1984, 152, 270-274.	1.2	48
183	Selective expression of cell type specific cell-cell adhesion molecules in mouse hybrid cells. Differentiation, 1983, 24, 140-144.	1.0	2
184	The calcium-dependent cell-cell adhesion system regulates inner cell mass formation and cell surface polarization in early mouse development. Cell, 1983, 35, 631-638.	13.5	247
185	Cleavage stage mouse embryos share a common cell adhesion system with teratocarcinoma cells. Developmental Biology, 1982, 92, 521-528.	0.9	60
186	Teratocarcinoma cell adhesion: Identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell, 1982, 28, 217-224.	13.5	260
187	Nullipotent Teratocarcinoma Cells Acquire the Pluripotency for Differentiation by Fusion with Somatic Cells. Differentiation, 1982, 23, 83-86.	1.0	25
188	A Brief Contact with Early Embryonic Cells Induces the Differentiation of Embryonal Carcinoma Cells. (embryonal carcinoma/differentiation/mouse embryo/aggregation chimera). Development Growth and Differentiation, 1982, 24, 513-520.	0.6	3
189	Molecular Insight to the Mechanisms of Cell Adhesion in Relation with Early Mammalian Morphogenesis. , 1982, , 77-85.		0
190	Selective adhesion of embryonal carcinoma cells and differentiated cells by Ca2+-dependent sites. Developmental Biology, 1981, 87, 340-350.	0.9	135
191	CELL ASSOCIATION PATTERN IN AGGREGATES CONTROLLED BY MULTIPLE CELL-CELL ADHESION MECHANISMS. Development Growth and Differentiation, 1980, 22, 133-142.	0.6	18
192	Differences in the Mechanisms of Cell-Cell and Cell-Substrate Adhesion Revealed in a Human Retinoblastoma Cell Line. Cell Structure and Function, 1980, 5, 183-190.	0.5	10
193	Experimental manipulation of cell surface to affect cellular recognition mechanisms. Developmental Biology, 1979, 70, 195-205.	0.9	99
194	Immunological detection of cell surface components related with aggregation of Chinese hamster and chick embryonic cells. Developmental Biology, 1979, 70, 206-216.	0.9	146
195	Calcium-Dependent and-Independent Adhesion of Normal and Transformed BHK Cells. Cell Structure and Function, 1977, 2, 289-296.	0.5	40
196	Two Mechanisms in Cell Adhesion Revealed by Effects of Divalent Cations. Cell Structure and Function, 1976, 1, 377-388.	0.5	25
197	Alteration of distribution patterns of cultured cells on the substrate by divalent cations. Developmental Biology, 1974, 39, 336-341.	0.9	3
198	Alteration of distribution patterns of cultured cells on the substrate by divalent cations. Developmental Biology, 1974, 39, 336-341.	0.9	5

#	Article	IF	CITATIONS
199	THE EXPRESSION OF DIFFERENTIATION BY CHICKEN LENS EPITHELIUM IN IN VITRO CELL CULTURE*. Development Growth and Differentiation, 1971, 13, 323-336.	0.6	103
200	GROWTH OF THE CHICKEN EMBRYONIC LENS TRANSPLANTED ONTO THE CHORIO-ALLANTOIC MEMBRANE. Development Growth and Differentiation, 1970, 12, 21-30.	0.6	8
201	CAMSAP2 organizes a \hat{I}^3 -tubulin-independent microtubule nucleation centre through phase separation. ELife, 0, 11, .	2.8	12