
## Darae Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7148228/publications.pdf Version: 2024-02-01



DADAE LEONC

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Computational<br>Materials Science, 2014, 81, 216-225.                                               | 3.0 | 113       |
| 2  | An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Physica A:<br>Statistical Mechanics and Its Applications, 2009, 388, 1791-1803.              | 2.6 | 108       |
| 3  | An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation. Computers<br>and Mathematics With Applications, 2010, 60, 1591-1606.                           | 2.7 | 106       |
| 4  | Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows.<br>Computers and Fluids, 2017, 156, 239-246.                                                   | 2.5 | 66        |
| 5  | Fast local image inpainting based on the Allen–Cahn model. , 2015, 37, 65-74.                                                                                                         |     | 51        |
| 6  | A conservative numerical method for the Cahn–Hilliard equation with Dirichlet boundary conditions in complex domains. Computers and Mathematics With Applications, 2013, 65, 102-115. | 2.7 | 46        |
| 7  | Basic Principles and Practical Applications of the Cahn–Hilliard Equation. Mathematical Problems in Engineering, 2016, 2016, 1-11.                                                    | 1.1 | 45        |
| 8  | Finite Element Analysis of Schwarz P Surface Pore Geometries for Tissue-Engineered Scaffolds.<br>Mathematical Problems in Engineering, 2012, 2012, 1-13.                              | 1.1 | 40        |
| 9  | An explicit hybrid finite difference scheme for the Allen–Cahn equation. Journal of Computational and Applied Mathematics, 2018, 340, 247-255.                                        | 2.0 | 36        |
| 10 | A conservative numerical method for the Cahn–Hilliard equation in complex domains. Journal of<br>Computational Physics, 2011, 230, 7441-7455.                                         | 3.8 | 30        |
| 11 | A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation. Physica A: Statistical Mechanics and Its Applications, 2014, 409, 17-28.        | 2.6 | 27        |
| 12 | A finite difference method for a conservative Allen–Cahn equation on non-flat surfaces. Journal of<br>Computational Physics, 2017, 334, 170-181.                                      | 3.8 | 27        |
| 13 | A comparison study of ADI and operator splitting methods on option pricing models. Journal of Computational and Applied Mathematics, 2013, 247, 162-171.                              | 2.0 | 25        |
| 14 | Motion by mean curvature of curves on surfaces using the Allen–Cahn equation. International<br>Journal of Engineering Science, 2015, 97, 126-132.                                     | 5.0 | 25        |
| 15 | Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows. Computer<br>Methods in Applied Mechanics and Engineering, 2013, 257, 36-46.                    | 6.6 | 24        |
| 16 | Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal<br>Cahn-Hilliard equation. European Physical Journal E, 2015, 38, 117.                       | 1.6 | 23        |
| 17 | Comparison study of numerical methods for solving the Allen–Cahn equation. Computational<br>Materials Science, 2016, 111, 131-136.                                                    | 3.0 | 22        |
| 18 | Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers.<br>Current Applied Physics, 2014, 14, 1263-1272.                                    | 2.4 | 21        |

Darae Jeong

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fourier-Spectral Method for the Phase-Field Equations. Mathematics, 2020, 8, 1385.                                                                                                       | 2.2 | 20        |
| 20 | A practical and efficient numerical method for the Cahn–Hilliard equation in complex domains.<br>Communications in Nonlinear Science and Numerical Simulation, 2019, 73, 217-228.        | 3.3 | 19        |
| 21 | Numerical simulation of the zebra pattern formation on a three-dimensional model. Physica A:<br>Statistical Mechanics and Its Applications, 2017, 475, 106-116.                          | 2.6 | 18        |
| 22 | AN ACCURATE AND EFFICIENT NUMERICAL METHOD FOR BLACK-SCHOLES EQUATIONS. Communications of the Korean Mathematical Society, 2009, 24, 617-628.                                            | 0.2 | 18        |
| 23 | A practical finite difference method for the three-dimensional Black–Scholes equation. European<br>Journal of Operational Research, 2016, 252, 183-190.                                  | 5.7 | 16        |
| 24 | Adaptive mesh refinement for simulation of thin film flows. Meccanica, 2014, 49, 239-252.                                                                                                | 2.0 | 15        |
| 25 | Multicomponent volume reconstruction from slice data using a modified multicomponent<br>Cahn–Hilliard system. Pattern Recognition, 2019, 93, 124-133.                                    | 8.1 | 14        |
| 26 | Comparison study on the different dynamics between the Allen–Cahn and the Cahn–Hilliard equations. Computers and Mathematics With Applications, 2019, 77, 311-322.                       | 2.7 | 14        |
| 27 | Modeling and simulation of the hexagonal pattern formation of honeycombs by the immersed boundary method. Communications in Nonlinear Science and Numerical Simulation, 2018, 62, 61-77. | 3.3 | 13        |
| 28 | A benchmark problem for the two- and three-dimensional Cahn–Hilliard equations. Communications<br>in Nonlinear Science and Numerical Simulation, 2018, 61, 149-159.                      | 3.3 | 13        |
| 29 | Finite Difference Method for the Black–Scholes Equation Without Boundary Conditions.<br>Computational Economics, 2018, 51, 961-972.                                                      | 2.6 | 13        |
| 30 | Efficient 3D Volume Reconstruction from a Point Cloud Using a Phase-Field Method. Mathematical<br>Problems in Engineering, 2018, 2018, 1-9.                                              | 1.1 | 13        |
| 31 | A fast and practical adaptive finite difference method for the conservative Allen–Cahn model in two-phase flow system. International Journal of Multiphase Flow, 2021, 137, 103561.      | 3.4 | 13        |
| 32 | Reconstruction of the Time-Dependent Volatility Function Using the Black–Scholes Model. Discrete<br>Dynamics in Nature and Society, 2018, 2018, 1-9.                                     | 0.9 | 12        |
| 33 | A Hybrid Monte Carlo and Finite Difference Method for Option Pricing. Computational Economics, 2019, 53, 111-124.                                                                        | 2.6 | 12        |
| 34 | Mathematical model and numerical simulation of the cell growth in scaffolds. Biomechanics and<br>Modeling in Mechanobiology, 2012, 11, 677-688.                                          | 2.8 | 11        |
| 35 | Energy-minimizing wavelengths of equilibrium states for diblock copolymers in the hex-cylinder phase. Current Applied Physics, 2015, 15, 799-804.                                        | 2.4 | 11        |
| 36 | A practical numerical scheme for the ternary Cahn–Hilliard system with a logarithmic free energy.<br>Physica A: Statistical Mechanics and Its Applications, 2016, 442, 510-522.          | 2.6 | 9         |

DARAE JEONG

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nonlinear Multigrid Implementation for the Two-Dimensional Cahn–Hilliard Equation. Mathematics,<br>2020, 8, 97.                                                                                                   | 2.2 | 9         |
| 38 | An efficient numerical method for evolving microstructures with strong elastic inhomogeneity.<br>Modelling and Simulation in Materials Science and Engineering, 2015, 23, 045007.                                 | 2.0 | 8         |
| 39 | A multigrid solution for the Cahn–Hilliard equation on nonuniform grids. Applied Mathematics and<br>Computation, 2017, 293, 320-333.                                                                              | 2.2 | 8         |
| 40 | Phase-field model and its splitting numerical scheme for tissue growth. Applied Numerical Mathematics, 2017, 117, 22-35.                                                                                          | 2.1 | 7         |
| 41 | A Crank–Nicolson scheme for the Landau–Lifshitz equation without damping. Journal of<br>Computational and Applied Mathematics, 2010, 234, 613-623.                                                                | 2.0 | 6         |
| 42 | Accuracy, Robustness, and Efficiency of the Linear Boundary Condition for the Black-Scholes<br>Equations. Discrete Dynamics in Nature and Society, 2015, 2015, 1-10.                                              | 0.9 | 6         |
| 43 | The daily computed weighted averaging basic reproduction numberR0,k,ωnfor MERS-CoV in South Korea.<br>Physica A: Statistical Mechanics and Its Applications, 2016, 451, 190-197.                                  | 2.6 | 6         |
| 44 | Finite Difference Method for the Multi-Asset Black–Scholes Equations. Mathematics, 2020, 8, 391.                                                                                                                  | 2.2 | 6         |
| 45 | A practical adaptive grid method for the Allen–Cahn equation. Physica A: Statistical Mechanics and Its<br>Applications, 2021, 573, 125975.                                                                        | 2.6 | 6         |
| 46 | ROBUST AND ACCURATE METHOD FOR THE BLACK-SCHOLES EQUATIONS WITH PAYOFF-CONSISTENT EXTRAPOLATION. Communications of the Korean Mathematical Society, 2015, 30, 297-311.                                            | 0.2 | 6         |
| 47 | An Immersed Boundary Method for a Contractile Elastic Ring in a Three-Dimensional Newtonian Fluid.<br>Journal of Scientific Computing, 2016, 67, 909-925.                                                         | 2.3 | 5         |
| 48 | A conservative finite difference scheme for the N-component Cahn–Hilliard system on curved surfaces in 3D. Journal of Engineering Mathematics, 2019, 119, 149-166.                                                | 1.2 | 5         |
| 49 | Porous Three-Dimensional Scaffold Generation for 3D Printing. Mathematics, 2020, 8, 946.                                                                                                                          | 2.2 | 5         |
| 50 | AN EFFICIENT AND ACCURATE NUMERICAL SCHEME FOR TURING INSTABILITY ON A PREDATOR–PREY MODEL.<br>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250139.             | 1.7 | 4         |
| 51 | An accurate and robust numerical method for micromagnetics simulations. Current Applied Physics, 2014, 14, 476-483.                                                                                               | 2.4 | 4         |
| 52 | Practical estimation of a splitting parameter for a spectral method for the ternary Cahn–Hilliard<br>system with a logarithmic free energy. Mathematical Methods in the Applied Sciences, 2017, 40,<br>1734-1745. | 2.3 | 4         |
| 53 | An Accurate and Practical Explicit Hybrid Method for the Chan–Vese Image Segmentation Model.<br>Mathematics, 2020, 8, 1173.                                                                                       | 2.2 | 4         |
| 54 | AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION. Bulletin of the Korean Mathematical Society, 2014, 51, 1087-1100.                                        | 0.3 | 4         |

Darae Jeong

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A hybrid numerical method for the phaseâ€field model of fluid vesicles in threeâ€dimensional space.<br>International Journal for Numerical Methods in Fluids, 2015, 78, 63-75. | 1.6 | 3         |
| 56 | Accurate and Efficient Computations of the Greeks for Options Near Expiry Using the Black-Scholes Equations. Discrete Dynamics in Nature and Society, 2016, 2016, 1-12.        | 0.9 | 3         |
| 57 | Verification of Convergence Rates of Numerical Solutions for Parabolic Equations. Mathematical<br>Problems in Engineering, 2019, 2019, 1-10.                                   | 1.1 | 3         |
| 58 | Mathematical modeling and computer simulation of the three-dimensional pattern formation of honeycombs. Scientific Reports, 2019, 9, 20364.                                    | 3.3 | 3         |
| 59 | Fast Monte Carlo Simulation for Pricing Equity-Linked Securities. Computational Economics, 2020, 56, 865-882.                                                                  | 2.6 | 3         |
| 60 | A simple and explicit numerical method for the phase-field model for diblock copolymer melts.<br>Computational Materials Science, 2022, 205, 111192.                           | 3.0 | 3         |
| 61 | A regime-switching model with the volatility smile for two-asset European options. Automatica, 2014, 50, 747-755.                                                              | 5.0 | 1         |
| 62 | Super-Fast Computation for the Three-Asset Equity-Linked Securities Using the Finite Difference<br>Method. Mathematics, 2020, 8, 307.                                          | 2.2 | 1         |
| 63 | A COMPARISON STUDY OF EXPLICIT AND IMPLICIT NUMERICAL METHODS FOR THE EQUITY-LINKED SECURITIES. Honam Mathematical Journal, 2015, 37, 441-455.                                 | 0.1 | 1         |
| 64 | Nonuniform Finite Difference Scheme for the Three-Dimensional Time-Fractional Black–Scholes<br>Equation. Journal of Function Spaces, 2021, 2021, 1-11.                         | 0.9 | 1         |
| 65 | A Projection Method for the Conservative Discretizations of Parabolic Partial Differential Equations.<br>Journal of Scientific Computing, 2018, 75, 332-349.                   | 2.3 | 0         |
| 66 | Linear Stability Analysis of the Cahn–Hilliard Equation in Spinodal Region. Journal of Function Spaces, 2022, 2022, 1-11.                                                      | 0.9 | 0         |