Darae Jeong

List of Publications by Year in descending order

Source: https:||exaly.com/author-pdf/7148228/publications.pdf
Version: 2024-02-01


```
1 Physical, mathematical, and numerical derivations of the Cahnâ€"Hilliard equation. Computational
Materials Science, 2014, 81, 216-225.
3.0

An unconditionally gradient stable numerical method for solving the Allenấ "Cahn equation. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 1791-1803.
\(3 \begin{aligned} & \text { An unconditionally stable hybrid numerical method for solving } \\ & \text { and Mathematics With Applications, 2010, 60, 1591-1606. }\end{aligned}\)

Conservative Allenâ€"Cahnâ€"Navierâ€"Stokes system for incompressible two-phase fluid flows.
2.5 66
4 Conservative Allenâ€"Cahnâ€"Navierâ€"Stok

5 Fast local image inpainting based on the Allenâ \(\in^{\text {"C Cahn model. , 2015, 37, 65-74. }}\)

6 A conservative numerical method for the Cahnâ€"Hilliard equation with Dirichlet boundary conditions in complex domains. Computers and Mathematics With Applications, 2013, 65, 102-115.
2.7

46

7 Basic Principles and Practical Applications of the Cahnâ€"Hilliard Equation. Mathematical Problems in
Engineering, 2016, 2016, 1-11.
\(1.1 \quad 45\)

8 Finite Element Analysis of Schwarz P Surface Pore Geometries for Tissue-Engineered Scaffolds.
8 Mathematical Problems in Engineering, 2012, 2012, 1-13.
An explicit hybrid finite difference scheme for the Allenâ€"Cahn equation. Journal of Computational
and Applied Mathematics, 2018, 340, 247-255.

10 A conservative numerical method for the Cahnấ \({ }^{\text {"Hilliard equation in complex domains. Journal of }}\) Computational Physics, 2011, 230, 7441-7455.
3.8

30
11 A fourth-order spatial accurate and practically stable compact scheme for the Cahnấ "Hilliard equation. Physica A: Statistical Mechanics and Its Applications, 2014, 409, 17-28.

12 A finite difference method for a conservative Allenấe"Cahn equation on non-flat surfaces. Journal of Computational Physics, 2017, 334, 170-181.
3.8

27
13 A comparison study of ADI and operator splitting methods on option pricing models. Journal of
2.0

25
Computational and Applied Mathematics, 2013, 247, 162-171.

Motion by mean curvature of curves on surfaces using the Allenâ€"Cahn equation. International Journal of Engineering Science, 2015, 97, 126-132.
5.0

25

Current Applied Physics, 2014, 14, 1263-1272.
19 Fourier-Spectral Method for the Phase-Field Equations. Mathematics, 2020, 8, 1385 . 2.2

AN ACCURATE AND EFFICIENT NUMERICAL METHOD FOR BLACK-SCHOLES EQUATIONS. Communications of the Korean Mathematical Society, 2009, 24, 617-628.
0.218

A practical finite difference method for the three-dimensional Blackâ€"Scholes equation. European
Journal of Operational Research, 2016, 252, 183-190.
5.716

24 Adaptive mesh refinement for simulation of thin film flows. Meccanica, 2014, 49, 239-252.
2.0

15
25 Multicomponent volume reconstruction from slice data using a modified multicomponent Cahnâ€"Hilliard system. Pattern Recognition, 2019, 93, 124-133.

14Comparison study on the different dynamics between the Allenâ€"Cahn and the Cahnâ€"Hilliardequations. Computers and Mathematics With Applications, 2019, 77, 311-322.
\[
\begin{aligned}
& \text { Finite Difference Method for the Blackâ€"Scholes Equation Without Boundary Conditions. } \\
& \text { Computational Economics, 2018, 51, 961-972. }
\end{aligned}
\]

Modeling and simulation of the hexagonal pattern formation of honeycombs by the immers
boundary method. Communications in Nonlinear Science and Numerical Simulation, 2018,
\(28 \quad \begin{aligned} & \text { A benchmark problem for the two- and three-dimensional Cahnâ€" } \\ & \text { in Nolliard equations. Comm }\end{aligned}\)
29 Finite Difference Method for the Blackâ \(€^{\text {" }}\) Scholes Equation Without Boundary Conditions.
Computational Economics, 2018, 51, 961-972.
Modeling and simulation of the hexagonal pattern formation of honeycombs by the immers
boundary method. Communications in Nonlinear Science and Numerical Simulation, 2018,
\(28 \quad \begin{aligned} & \text { A benchmark problem for the two- and three-dimensional Cahnâf"Hilliard equations. Comm } \\ & \text { in Nonlinear Science and Numerical Simulation, 2018, 61, 149-159. }\end{aligned}\)
29 Finite Difference Method for the Blackâf"Scholes Equation Without Boundary Conditions.
Computational Economics, 2018, 51, 961-972.
2.6

13

30 Efficient 3D Volume Reconstruction from a Point Cloud Using a Phase-Field Method. Mathematical
1.1

13
30 Problems in Engineering, 2018, 2018, 1-9.
\(3.4 \quad 13\)
A fast and practical adaptive finite difference method for the conservative Allenâ€ "Cahn model in
two-phase flow system. International Journal of Multiphase Flow, 2021, 137, 103561.

Reconstruction of the Time-Dependent Volatility Function Using the Blackâ€"Scholes Model. Discrete
0.9

Dynamics in Nature and Society, 2018, 2018, 1-9.
12

\section*{32}

A Hybrid Monte Carlo and Finite Difference Method for Option Pricing. Computational Economics,
2.6

2019, 53, 111-124.

Mathematical model and numerical simulation of the cell growth in scaffolds. Biomechanics and
Modeling in Mechanobiology, 2012, 11, 677-688.
2.8

11

Energy-minimizing wavelengths of equilibrium states for diblock copolymers in the hex-cylinder
phase. Current Applied Physics, 2015, 15, 799-804.
2.4

11
Nonlinear Multigrid Implementation for the Two-Dimensional Cahnâ€"Hilliard Equation. Mathematics,
\(2020,8,97\).
\begin{tabular}{|c|c|c|c|}
\hline 45 & A practical adaptive grid method for the Allenâ \(€^{\prime \prime}\) Cahn equation. Physica A: Statistical Mechanics and Its Applications, 2021, 573, 125975. & 2.6 & 6 \\
\hline 46 & ROBUST AND ACCURATE METHOD FOR THE BLACK-SCHOLES EQUATIONS WITH PAYOFF-CONSISTENT EXTRAPOLATION. Communications of the Korean Mathematical Society, 2015, 30, 297-311. & 0.2 & 6 \\
\hline 47 & An Immersed Boundary Method for a Contractile Elastic Ring in a Three-Dimensional Newtonian Fluid. Journal of Scientific Computing, 2016, 67, 909-925. & 2.3 & 5 \\
\hline 48 & A conservative finite difference scheme for the N-component Cahnấ "Hilliard system on curved surfaces in 3D. Journal of Engineering Mathematics, 2019, 119, 149-166. & 1.2 & 5 \\
\hline 49 & Porous Three-Dimensional Scaffold Generation for 3D Printing. Mathematics, 2020, 8, 946. & 2.2 & 5 \\
\hline
\end{tabular}

50 AN EFFICIENT AND ACCURATE NUMERICAL SCHEME FOR TURING INSTABILITY ON A PREDATORâ€"PREY MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250139.
1.7

4

An accurate and robust numerical method for micromagnetics simulations. Current Applied Physics,
2014, 14, 476-483.
2.4

Practical estimation of a splitting parameter for a spectral method for the ternary Cahnâ€"Hilliard system with a logarithmic free energy. Mathematical Methods in the Applied Sciences, 2017, 40,

56 Accurate and Efficient Computations of the Greeks for Options Near Expiry Using the Black-Scholes

Verification of Convergence Rates of Numerical Solutions for Parabolic Equations. Mathematical
Problems in Engineering, 2019, 2019, 1-10.
Mathematical modeling and computer simulation of the three-dimensional pattern formation of
honeycombs. Scientific Reports, 2019, 9, 20364.
\begin{tabular}{|c|c|c|c|}
\hline 59 & Fast Monte Carlo Simulation for Pricing Equity-Linked Securities. Computational Economics, 2020, 56, 865-882. & 2.6 & 3 \\
\hline 60 & A simple and explicit numerical method for the phase-field model for diblock copolymer melts. Computational Materials Science, 2022, 205, 111192. & 3.0 & 3 \\
\hline 61 & A regime-switching model with the volatility smile for two-asset European options. Automatica, 2014, 50, 747-755. & 5.0 & 1 \\
\hline
\end{tabular}

62 Super-Fast Computation for the Three-Asset Equity-Linked Securities Using the Finite Difference Method. Mathematics, 2020, 8, 307.
\(2.2 \quad 1\)
A COMPARISON STUDY OF EXPLICIT AND IMPLICIT NUMERICAL METHODS FOR THE EQUITY-LINKED
SECURITIES. Honam Mathematical Journal, 2015, 37, 441-455. \(\quad 0.1\)
A Projection Method for the Conservative Discretizations of Parabolic Partial Differential Equations.
Journal of Scientific Computing, 2018, 75, 332-349.```

