Maura Tomatis

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/7148075/publications.pdf
Version: 2024-02-01

$$
\begin{aligned}
& \text { Reactivity of carbon nanotubes: Free radical generation or scavenging activity?. Free Radical Biology } \\
& \text { and Medicine, 2006, 40, 1227-1233. }
\end{aligned}
$$

2.9

Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Physicochemical Aspects. Chemical Research in Toxicology, 2008, 21, 1690-1697.

Interaction of Spherical Silica Nanoparticles with Neuronal Cells: Sizeâ€Dependent Toxicity and

POTENTIAL TOXICITY OF NONREGULATED ASBESTIFORM MINERALS: BALANGEROITE FROM THE WESTERN
4 ALPS. PART 1: IDENTIFICATION AND CHARACTERIZATION. Journal of Toxicology and Environmental Health -
2.3

6 Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine, 2011, 6, 899-920.
3.3

7 Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity
$7 \quad$ and surface disorder. Particle and Fibre Toxicology, 2015, 13, 32.
$6.2 \quad 77$

8 Free radical generation in the toxicity of inhaled mineral particles: the role of iron speciation at the surface of asbestos and silica. Redox Report, 2001, 6, 235-241.

Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica
9 particles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,
7.1 27836-27846.

Relationship between the state of the surface of four commercial quartz flours and their biological 10 activity in vitro and in vivo. International Journal of Hygiene and Environmental Health, 2004, 207, 89-104.

$$
\begin{aligned}
& 11 \text { In Search of the Chemical Basis of the Hemolytic Potential of Silicas. Chemical Research in Toxicology, } \\
& 2013,26,1188-1198 .
\end{aligned}
$$

$3.3 \quad 72$

Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of
14 EyjafjallajÃๆkull and GrÃmsvÃๆtn volcanoes, Iceland using a rapid respiratory hazard assessmentSoil Fungi Reduce the Iron Content and the DNA Damaging Effects of Asbestos Fibers. Environmental
Hematite Nanoparticles Larger than 90 nm Show No Sign of Toxicity in Terms of Lactate
20 Dehydrogenase Release, Nitric Oxide Generation, Apoptosis, and Comet Assay in Murine Alveolar
Macrophages and Human Lung Epithelial Cells. Chemical Research in Toxicology, 2012, 25, 850-861.
21 A Biomimetic Approach to the Chemical Inactivation of Chrysotile Fibres by Lichen Metabolites.
Chemistry - A European Journal, 2007, 13, 4081-4093.
22 Bioweathering of chrysotile by fungi isolated in ophiolitic sites. FEMS Microbiology Letters, 2008, 285,
242-249.
3.3

42
1.8

High aspect ratio materials: role of surface chemistry vs. length in the historical â€œlong and short
amosite asbestos fibersâ€: Inhalation Toxicology, 2010, 22, 984-998.
1.6

Long and short fiber amosite asbestos alters at a different extent the redox metabolism in human lung epithelial cells. Toxicology and Applied Pharmacology, 2003, 193, 106-115.
2.8

39

> Weathering of chrysotile asbestos by the serpentine rock-inhabiting fungus Verticillium
> leptobactrum. FEMS Microbiology Ecology, 2009, 69, 132-141.
$2.7 \quad 39$

Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash. Bulletin of Volcanology, 2012, 74, 913-930.
3.0

39

```
27 Inorganic Materials and Living Organisms: Surface Modifications and Fungal Responses to Various
\(27 \quad\) Asbestos Forms. Chemistry - A European Journal, 2005, 11, 5611-5618.
```

POTENTIAL TOXICITY OF NONREGULATED ASBESTIFORM MINERALS: BALANGEROITE FROM THE WESTERN ALPS. PART 3: DEPLETION OF ANTIOXIDANT DEFENSES. Journal of Toxicology and Environmental Health -
2.3
3.3

34

Part A: Current Issues, 2005, 68, 41-49.

29 | Ascorbic Acid Modifies the Surface of Asbestos:â€\%. Possible Implications in the Molecular Mechanisms of |
| :--- |
| Toxicity. Chemical Research in Toxicology, 2003, 16, 328-335. |

$3.3 \quad 31$

Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing
30 minerals with a special attention to mineral fibers. Free Radical Biology and Medicine, 2019, 133, 21-37.
2.9

30
31 A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid
under power ultrasound. Ultrasonics Sonochemistry, 2008, 15, 420-427.
8.2

29

In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on
1.9

29 pro-inflammatory and pro-oxidative effects. Journal of Nanoparticle Research, 2012, 14, 1.

33 Editor's Highlight: Abrasion of Artificial Stones as a New Cause of an Ancient Disease.
3.1

Physicochemical Features and Cellular Responses. Toxicological Sciences, 2016, 153, 4-17.
29

34 Hydroxyl radicals and oxidative stress: the dark side of Fe corrosion. Colloids and Surfaces B:
Biointerfaces, 2020, 185, 110542.

Reactive Sites at the Surface of Crocidolite Asbestosâ€. Langmuir, 1999, 15, 5742-5752.

Assessment of asbestos exposure during a simulated agricultural activity in the proximity of the
former asbestos mine of Balangero, Italy. Journal of Hazardous Materials, 2016, 308, 321-327.

Surface reactivity of amphibole asbestos: a comparison between crocidolite and tremolite. Scientific Reports, 2017, 7, 14696.
3.3

27

39 Iron inhibits the nitric oxide synthesis elicited by asbestos in murine macrophages. Free Radical Biology and Medicine, 2001, 31, 412-417.

Imogolite: An Aluminosilicate Nanotube Endowed with Low Cytotoxicity and Genotoxicity. Chemical
Research in Toxicology, 2014, 27, 1142-1154.

Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic. Journal of Non-Crystalline Solids, 2016, 432, 167-175.

Loss of Surface Reactivity upon Heating Amphibole Asbestos. Langmuir, 2002, 18, 4345-4350.
43 The combination of oxalic acid with power ultrasound fully degrades chrysotile asbestos fibres.Journal of Environmental Monitoring, 2007, 9, 1064.

2.1

The Effect of Weathering on Ecopersistence, Reactivity, and Potential Toxicity of Naturally Occurring 44 Asbestos and Asbestiform Minerals. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 305-314.

Mineralogical analyses and in vitro screening tests for the rapid evaluation of the health hazard of
volcanic ash at Rabaul volcano, Papua New Guinea. Bulletin of Volcanology, 2010, 72, 1077-1092.

Surface Reactivity and Cell Responses to Chrysotile Asbestos Nanofibers. Chemical Research in
3.3

21
SURFACE REACTIVITY, CYTOTOXICITY, AND TRANSFORMING POTENCY OF IRON-COVERED COMPARED TO

The iron-catalysed surface reactivity and health-pertinent physical characteristics of explosive

LiCoO2 particles used in Li-ion batteries induce primary mutagenicity in lung cells via their capacity to

57 Thermal inertization of amphibole asbestos modulates Fe topochemistry and surface reactivity.
$65 \quad$ Chrysotile asbestos migration in air from contaminated water: An experimental simulation. Journal of

Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on

