
Séverine Morisset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7148053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302, 832-837.	27.8	1,526
2	High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature, 2000, 408, 860-864.	27.8	449
3	Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. Journal of Clinical Investigation, 2006, 116, 760-768.	8.2	298
4	Involvement of histaminergic neurons in arousal mechanisms demonstrated with H3-receptor ligands in the cat. Brain Research, 1990, 523, 325-330.	2.2	224
5	H3-Receptors Control Histamine Release in Human Brain. Journal of Neurochemistry, 1988, 51, 105-108.	3.9	144
6	Distinct pharmacology of rat and human histamine H3 receptors: role of two amino acids in the third transmembrane domain. British Journal of Pharmacology, 2000, 131, 1247-1250.	5.4	140
7	Protean agonism at histamine H3 receptors in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11086-11091.	7.1	136
8	Constitutive activity of the histamine H3 receptor. Trends in Pharmacological Sciences, 2007, 28, 350-357.	8.7	119
9	Histamine H ₃ â€receptorâ€mediated [³⁵ S]GTPγ[S] binding: evidence for constitutive activity of the recombinant and native rat and human H ₃ receptors. British Journal of Pharmacology, 2002, 135, 383-392.	5.4	117
10	Cloning and cerebral expression of the guinea pig histamine H3 receptor. NeuroReport, 2000, 11, 755-759.	1.2	107
11	Brain histamine and schizophrenia: Potential therapeutic applications of H3-receptor inverse agonists studied with BF2.649. Biochemical Pharmacology, 2007, 73, 1215-1224.	4.4	101
12	Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nature Chemical Biology, 2014, 10, 590-597.	8.0	95
13	Ciproxifan, a Histamine H ₃ -Receptor Antagonist/Inverse Agonist, Potentiates Neurochemical and Behavioral Effects of Haloperidol in the Rat. Journal of Neuroscience, 2002, 22, 7272-7280.	3.6	89
14	Histamine H3 receptor binding sites in rat brain membranes: modulations by guanine nucleotides and divalent cations. European Journal of Pharmacology, 1990, 188, 219-227.	2.6	82
15	Recessive Isolated Growth Hormone Deficiency and Mutations in the Ghrelin Receptor. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4334-4341.	3.6	74
16	Physical interaction between neurofibromin and serotonin 5-HT ₆ receptor promotes receptor constitutive activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12310-12315.	7.1	71
17	The Rat H3 Receptor: Gene Organization and Multiple Isoforms. Biochemical and Biophysical Research Communications, 2001, 280, 75-80.	2.1	69
18	Development of a New Class of Nonimidazole Histamine H3 Receptor Ligands with Combined Inhibitory Histamine N-Methyltransferase Activity. Journal of Medicinal Chemistry, 2002, 45, 1128-1141.	6.4	67

Séverine Morisset

#	Article	IF	CITATIONS
19	Fluorescence resonance energy transfer to probe human M1 muscarinic receptor structure and drug binding properties. Journal of Neurochemistry, 2003, 85, 768-778.	3.9	64
20	Compared pharmacology of human histamine H3 and H4 receptors: structure-activity relationships of histamine derivatives. British Journal of Pharmacology, 2006, 147, 744-754.	5.4	55
21	Different antagonist binding properties of human and rat histamine H3 receptors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 951-954.	2.2	51
22	Involvement of histamine receptors in the atypical antipsychotic profile of clozapine: a reassessment in vitro and in vivo. Psychopharmacology, 2012, 220, 225-241.	3.1	50
23	Novel Histamine H3-Receptor Antagonists with Carbonyl-Substituted 4-(3-(Phenoxy)propyl)-1H-imidazole Structures like Ciproxifan and Related Compounds. Journal of Medicinal Chemistry, 2000, 43, 3987-3994.	6.4	49
24	Cloning and expression of the mouse histamine H3 receptor: evidence for multiple isoforms. Journal of Neurochemistry, 2004, 90, 1331-1338.	3.9	48
25	Progress in the proxifan class: heterocyclic congeners as novel potent and selective histamine H3-receptor antagonists. European Journal of Pharmaceutical Sciences, 2002, 15, 367-378.	4.0	47
26	Inhibition of histamine versus acetylcholine metabolism as a mechanism of tacrine activity. European Journal of Pharmacology, 1996, 315, R1-R2.	3.5	43
27	N-methyl-d-aspartate receptor antagonists enhance histamine neuron activity in rodent brain. Journal of Neurochemistry, 2006, 98, 1487-1496.	3.9	43
28	MicroRNAs in Neurocognitive Dysfunctions: New Molecular Targets for Pharmacological Treatments?. Current Neuropharmacology, 2017, 15, 260-275.	2.9	43
29	6 The Histamine H3 Receptor and its Ligands. Progress in Medicinal Chemistry, 2001, 38, 279-308.	10.4	41
30	Chromosomal mapping and organization of the human histamine H3 receptor gene. NeuroReport, 2001, 12, 321-324.	1.2	38
31	Histamine and Schizophrenia. International Review of Neurobiology, 2007, 78, 247-287.	2.0	38
32	Bioluminescence Resonance Energy Transfer as a Method to Study Protein-Protein Interactions: Application to G Protein Coupled Receptor Biology. Molecules, 2019, 24, 537.	3.8	36
33	Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, modulates the effects of methamphetamine on neuropeptide mRNA expression in rat striatum. European Journal of Neuroscience, 2003, 17, 307-314.	2.6	34
34	Novel Nonimidazole Histamine H3 Receptor Antagonists:  1-(4-(Phenoxymethyl)benzyl)piperidines and Related Compounds. Journal of Medicinal Chemistry, 2003, 46, 1523-1530.	6.4	34
35	Effects of Betahistine at Histamine H ₃ Receptors: Mixed Inverse Agonism/Agonism In Vitro and Partial Inverse Agonism In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 945-954.	2.5	34
36	Histamine H2 receptor gene variants: lack of association with schizophrenia. Molecular Psychiatry, 2000, 5, 159-164.	7.9	33

#	Article	IF	CITATIONS
37	Histamine H3 and dopamine D2 receptor-mediated [35S]GTPγ[S] binding in rat striatum: Evidence for additive effects but lack of interactions. Biochemical Pharmacology, 2007, 73, 1172-1181.	4.4	29
38	Imidazole derivatives as a novel class of hybrid compounds with inhibitory histamine N-methyltransferase potencies and histamine hH3 receptor affinities. Bioorganic and Medicinal Chemistry, 2003, 11, 2163-2174.	3.0	28
39	Development of FUB 181, a Selective Histamine H3-Receptor Antagonist of High Oralin Vivo Potency with 4-(?gv-(Arylalkyloxy)alkyl)-1H-imidazole Structure. Archiv Der Pharmazie, 1998, 331, 211-218.	4.1	26
40	CSF Levels of the Histamine Metabolite tele-Methylhistamine are only Slightly Decreased in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 861-871.	2.6	25
41	Modulation of prepulse inhibition and stereotypies in rodents: no evidence for antipsychotic-like properties of histamine H3-receptor inverse agonists. Psychopharmacology, 2010, 210, 591-604.	3.1	23
42	Changes in Histamine H3 Receptor Responsiveness in Mouse Brain. Journal of Neurochemistry, 2001, 74, 339-346.	3.9	21
43	Histamine H3 Receptor-Mediated Signaling Protects Mice from Cerebral Malaria. PLoS ONE, 2009, 4, e6004.	2.5	21
44	Autoregulation of McA-RH7777 Hepatoma Cell Proliferation by Histamine H3 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 406-413.	2.5	20
45	Ciproxifan, a histamine H3-receptor antagonist / inverse agonist, modulates methamphetamine-induced sensitization in mice. European Journal of Neuroscience, 2011, 33, 1197-1204.	2.6	20
46	Enhanced responsiveness of <i>Ghsr</i> ^{Q343X} rats to ghrelin results in enhanced adiposity without increased appetite. Science Signaling, 2016, 9, ra39.	3.6	20
47	Pharmacomodulation of microRNA Expression in Neurocognitive Diseases: Obstacles and Future Opportunities. Current Neuropharmacology, 2017, 15, 276-290.	2.9	20
48	Application of genomics to drug design: the example of the histamine H3 receptor. European Neuropsychopharmacology, 2001, 11, 441-448.	0.7	18
49	Structural variations of 1-(4-(phenoxymethyl)benzyl)piperidines as nonimidazole histamine H3 receptor antagonists. Bioorganic and Medicinal Chemistry, 2004, 12, 2727-2736.	3.0	18
50	Effects of histamine H 3 receptor agonist and antagonist on histamine co-transmitter expression in rat brain. Journal of Neural Transmission, 2002, 109, 293-306.	2.8	17
51	Search for Histamine H3Receptor Ligands with Combined Inhibitory Potency at HistamineN-Methyltransferase: ω-Piperidinoalkanamine Derivatives. Archiv Der Pharmazie, 2004, 337, 533-545.	4.1	15
52	Rational Design, Pharmacomodulation, and Synthesis of Dual 5-Hydroxytryptamine 7 (5-HT ₇)/5-Hydroxytryptamine 2A (5-HT _{2A}) Receptor Antagonists and Evaluation by [¹⁸ F]-PET Imaging in a Primate Brain. Journal of Medicinal Chemistry, 2015, 58, 8066-8096.	6.4	15
53	Targeting the <i>cis</i> â€dimerization of <scp>LINGO</scp> â€d with low <scp>MW</scp> compounds affects its downstream signalling. British Journal of Pharmacology, 2015, 172, 841-856.	5.4	14
54	Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 3426.	4.1	11

#	Article	IF	CITATIONS
55	4-(ω-(Alkyloxy)alkyl)-1H-imidazole Derivatives as Histamine H3Receptor Antagonists/Agonists. Journal of Medicinal Chemistry, 2004, 47, 2678-2687.	6.4	9
56	Meta-Substituted Aryl(thio)ethers as Potent Partial Agonists (or Antagonists) for the Histamine H3Receptor Lacking a Nitrogen Atom in the Side Chain§. Journal of Medicinal Chemistry, 2004, 47, 3264-3274.	6.4	9
57	A fraction of neurofibromin interacts with PML bodies in the nucleus of the CCF astrocytoma cell line. Biochemical and Biophysical Research Communications, 2012, 418, 689-694.	2.1	9
58	Mechanistic characterization of S 38093, a novel inverse agonist at histamine H3 receptors. European Journal of Pharmacology, 2017, 803, 11-23.	3.5	9
59	LINGO family receptors are differentially expressed in the mouse brain and form native multimeric complexes. FASEB Journal, 2020, 34, 13641-13653.	0.5	9
60	Chemical Synthesis of TFF3 Reveals Novel Mechanistic Insights and a Gut-Stable Metabolite. Journal of Medicinal Chemistry, 2021, 64, 9484-9495.	6.4	8
61	Pharmacological, neurochemical, and behavioral profile of JB-788, a new 5-HT1A agonist. Neuroscience, 2010, 169, 1337-1346.	2.3	5
62	Serodolin, a β-arrestin–biased ligand of 5-HT ₇ receptor, attenuates pain-related behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
63	The GTPase-activating protein-related domain of neurofibromin interacts with MC1R and regulates pigmentation-mediated signaling in human melanocytes. Biochemical and Biophysical Research Communications, 2021, 534, 758-764.	2.1	4
64	Complementary Nuclear Magnetic Resonance-Based Metabolomics Approaches for Glioma Biomarker Identification in a <i>Drosophila melanogaster</i> Model. Journal of Proteome Research, 2021, 20, 3977-3991.	3.7	4
65	Expression of the Human Serotonin 5-HT7 Receptor Rescues Phenotype Profile and Restores Dysregulated Biomarkers in a Drosophila melanogaster Glioma Model. Cells, 2022, 11, 1281.	4.1	3
66	Constitutive activity of the recombinant and native histamine H3 receptor. International Congress Series, 2003, 1249, 139-151.	0.2	2
67	BRET Analysis of GPCR Dimers in Neurons and Non-Neuronal Cells: Evidence for Inactive, Agonist, and Constitutive Conformations. International Journal of Molecular Sciences, 2021, 22, 10638.	4.1	1