
Jonathan P Rast

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/714793/publications.pdf Version: 2024-02-01

ΙΟΝΛΤΗΛΝ Ρ ΡΛΟΤ

#	Article	IF	CITATIONS
1	Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. Developmental and Comparative Immunology, 2021, 125, 104225.	2.3	5
2	Evolution of variable lymphocyte receptor B antibody loci in jawless vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
3	Ancient BCMA-like Genes Herald B Cell Regulation in Lampreys. Journal of Immunology, 2019, 203, 2909-2916.	0.8	3
4	Immune activity at the gut epithelium in the larval sea urchin. Cell and Tissue Research, 2019, 377, 469-474.	2.9	23
5	Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria. Current Biology, 2019, 29, 1818-1826.e6.	3.9	120
6	Analysis of immune response in the sea urchin larva. Methods in Cell Biology, 2019, 150, 333-355.	1.1	6
7	Bacterial Exposure Mediates Developmental Plasticity and Resistance to Lethal Vibrio lentus Infection in Purple Sea Urchin (Strongylocentrotus purpuratus) Larvae. Frontiers in Immunology, 2019, 10, 3014.	4.8	16
8	Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms. Briefings in Functional Genomics, 2018, 17, 362-371.	2.7	12
9	AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nature Communications, 2018, 9, 1948.	12.8	31
10	Echinodermata: The Complex Immune System in Echinoderms. , 2018, , 409-501.		62
11	Sea Urchin Larvae as a Model for Postembryonic Development. Results and Problems in Cell Differentiation, 2018, 65, 137-161.	0.7	13
12	Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nature Communications, 2017, 8, 15451.	12.8	216
13	An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response. Frontiers in Immunology, 2017, 8, 1297.	4.8	41
14	IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. ELife, 2017, 6, .	6.0	57
15	Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunology and Cell Biology, 2016, 94, 861-874.	2.3	78
16	A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Developmental Biology, 2016, 416, 149-161.	2.0	32
17	Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. Developmental and Comparative Immunology, 2015, 49, 179-189.	2.3	71
18	The ctenophore genome and the evolutionary origins of neural systems. Nature, 2014, 510, 109-114.	27.8	606

JONATHAN P RAST

#	Article	IF	CITATIONS
19	Lamprey immunity is far from primitive. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5746-5747.	7.1	20
20	An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Developmental Biology, 2013, 382, 280-292.	2.0	69
21	Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genetics, 2013, 45, 415-421.	21.4	588
22	Dynamic Evolution of Toll-Like Receptor Multigene Families in Echinoderms. Frontiers in Immunology, 2012, 3, 136.	4.8	116
23	The origins of vertebrate adaptive immunity. Nature Reviews Immunology, 2010, 10, 543-553.	22.7	284
24	Sp185/333: A novel family of genes and proteins involved in the purple sea urchin immune response. Developmental and Comparative Immunology, 2010, 34, 235-245.	2.3	57
25	SpTie1/2 is expressed in coelomocytes, axial organ and embryos of the sea urchin Strongylocentrotus purpuratus, and is an orthologue of vertebrate Tie1 and Tie2. Developmental and Comparative Immunology, 2010, 34, 884-895.	2.3	13
26	Highly diversified innate receptor systems and new forms of animal immunity. Seminars in Immunology, 2010, 22, 39-47.	5.6	71
27	Evolution of innate and adaptive immune recognition structures. Seminars in Immunology, 2010, 22, 1-2.	5.6	2
28	Universal rules of immunity. Immunology and Cell Biology, 2009, 87, 507-509.	2.3	2
29	Marine Invertebrate Genome Sequences and Our Evolving Understanding of Animal Immunity. Biological Bulletin, 2008, 214, 274-283.	1.8	56
30	The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research, 2008, 18, 1100-1111.	5.5	456
31	<i>Biological Bulletin</i> Virtual Symposium: Genomics of Large Marine Metazoans. Biological Bulletin, 2008, 214, 203-204.	1.8	1
32	Alternative mechanisms of immune receptor diversity. Current Opinion in Immunology, 2007, 19, 526-534.	5.5	52
33	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
34	The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 2006, 300, 349-365.	2.0	513
35	Unusual gene order and organization of the sea urchin hox cluster. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 45-58.	1.3	145
36	An ancient evolutionary origin of the Rag1/2 gene locus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3728-3733.	7.1	155

JONATHAN P RAST

#	Article	IF	CITATIONS
37	Genomic Insights into the Immune System of the Sea Urchin. Science, 2006, 314, 952-956.	12.6	384
38	Echinoderms. Current Biology, 2005, 15, R944-R946.	3.9	15
39	New Insights into Alternative Mechanisms of Immune Receptor Diversification. Advances in Immunology, 2005, 87, 209-236.	2.2	36
40	The phylogenetic origins of the antigenâ€binding receptors and somatic diversification mechanisms. Immunological Reviews, 2004, 200, 12-22.	6.0	108
41	Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expression Patterns, 2004, 4, 449-456.	0.8	135
42	Mechanisms of antigen receptor evolution. Seminars in Immunology, 2004, 16, 215-226.	5.6	62
43	Genomic Resources for the Study of Sea Urchin Development. Methods in Cell Biology, 2004, 74, 733-757.	1.1	12
44	Development gene networks and evolution. Journal of Structural and Functional Genomics, 2003, 3, 225-234.	1.2	4
45	Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2501-2506.	7.1	71
46	Development gene networks and evolution. Journal of Structural and Functional Genomics, 2003, 3, 225-34.	1.2	0
47	A Genomic Regulatory Network for Development. Science, 2002, 295, 1669-1678.	12.6	1,399
48	New Early Zygotic Regulators Expressed in Endomesoderm of Sea Urchin Embryos Discovered by Differential Array Hybridization. Developmental Biology, 2002, 246, 132-147.	2.0	148
49	A Provisional Regulatory Gene Network for Specification of Endomesoderm in the Sea Urchin Embryo. Developmental Biology, 2002, 246, 162-190.	2.0	319
50	brachyury Target Genes in the Early Sea Urchin Embryo Isolated by Differential Macroarray Screening. Developmental Biology, 2002, 246, 191-208.	2.0	75
51	Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor $\hat{I}\pm$ in zebrafish. Immunogenetics, 2000, 51, 915-923.	2.4	112
52	Members of the Ikaros Gene Family Are Present in Early Representative Vertebrates. Journal of Immunology, 2000, 165, 306-312.	0.8	52
53	Recovery of Developmentally Defined Gene Sets from High-Density cDNA Macroarrays. Developmental Biology, 2000, 228, 270-286.	2.0	85
54	A long form of the skate IgX gene exhibits a striking resemblance to the new shark IgW and IgNARC genes. Immunogenetics, 1999, 49, 56-67.	2.4	50

Jonathan P Rast

#	Article	IF	CITATIONS
55	Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes. Immunogenetics, 1999, 49, 773-786.	2.4	129
56	EVOLUTION OF ANTIGEN BINDING RECEPTORS. Annual Review of Immunology, 1999, 17, 109-147.	21.8	308
57	Towards understanding the evolutionary origins and early diversification of rearranging antigen receptors. Immunological Reviews, 1998, 166, 79-86.	6.0	37
58	α, β, γ, and δT Cell Antigen Receptor Genes Arose Early in Vertebrate Phylogeny. Immunity, 1997, 6, 1-11.	14.3	271
59	Identification and characterization of T-cell antigen receptor-related genes in phylogenetically diverse vertebrate species. Immunogenetics, 1995, 42, 204-12.	2.4	91
60	Complete genomic sequence and patterns of transcription of a member of an unusual family of closely related, chromosomally dispersed Ig gene clusters in Raja. International Immunology, 1994, 6, 1661-1670.	4.0	46
61	Evolutionary Development of the B-Cell Repertoirea. Annals of the New York Academy of Sciences, 1992, 651, 360-368.	3.8	8