Timothy Langrish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7146415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Color formation and Maillard reactions during the spray drying process of skim milk and model systems. Journal of Food Process Engineering, 2022, 45, e13936.	2.9	9
2	The relative importance of internal and external physical resistances to mass transfer for caffeine release from apple pectin tablets. Current Research in Food Science, 2022, 5, 634-641.	5.8	1
3	A Review of In Vitro Methods for Measuring the Glycemic Index of Single Foods: Understanding the Interaction of Mass Transfer and Reaction Engineering by Dimensional Analysis. Processes, 2022, 10, 759.	2.8	0
4	Multifilm Mass Transfer and Time Constants for Mass Transfer in Food Digestion: Application to Gut-on-Chip Models. , 2022, 1, 101-112.		1
5	A Review of the Extraction and Closed-Loop Spray Drying-Assisted Micro-Encapsulation of Algal Lutein for Functional Food Delivery. Processes, 2021, 9, 1143.	2.8	8
6	A review of Maillard reactions in spray dryers. Journal of Food Engineering, 2021, 305, 110615.	5.2	18
7	Probing Differences in Mass-Transfer Coefficients in Beaker and Stirrer Digestion Systems and the USP Dissolution Apparatus 2 Using Benzoic Acid Tablets. Processes, 2021, 9, 2168.	2.8	4
8	Pre-gelation assisted spray drying of whey protein isolates (WPI) for microencapsulation and controlled release. LWT - Food Science and Technology, 2020, 117, 108625.	5.2	17
9	Continuous fluidized bed drying: Residence time distribution characterization and effluent moisture content prediction. AICHE Journal, 2020, 66, e16902.	3.6	13
10	Response to comments on "A comparison of different physical stomach models and an analysis of shear stresses and strains in these system―by Wu and Chen (2020). Food Research International, 2020, 137, 109442.	6.2	1
11	Using CFD Simulations to Guide the Development of a New Spray Dryer Design. Processes, 2020, 8, 932.	2.8	11
12	A comparison of different physical stomach models and an analysis of shear stresses and strains in these system. Food Research International, 2020, 135, 109296.	6.2	23
13	Encapsulation of caffeine in spray-dried micro-eggs for controlled release: The effect of spray-drying (cooking) temperature. Food Hydrocolloids, 2020, 108, 105979.	10.7	25
14	Smart release-control of microencapsulated ingredients from milk protein tablets using spray drying and heating. Food Hydrocolloids, 2019, 92, 181-188.	10.7	13
15	Microencapsulation of pepsin in the spray-dried WPI (whey protein isolates) matrices for controlled release. Journal of Food Engineering, 2019, 263, 147-154.	5.2	14
16	Fabrication of novel casein gel with controlled release property via acidification, spray drying and tableting approach. Colloids and Surfaces B: Biointerfaces, 2019, 177, 329-337.	5.0	18
17	Redness generation via Maillard reactions of whey protein isolate (WPI) and ascorbic acid (vitamin C) in spray-dried powders. Journal of Food Engineering, 2019, 244, 11-20.	5.2	25
18	Controlled release of caffeine from tablets of spray-dried casein gels. Food Hydrocolloids, 2019, 88, 13-20.	10.7	26

TIMOTHY LANGRISH

#	Article	IF	CITATIONS
19	Spray drying assisted synthesis of porous carbons from whey powders for capacitive energy storage. Energy, 2018, 147, 308-316.	8.8	15
20	Preparation of core-shell microspheres of lactose with flower-like morphology and tailored porosity. Powder Technology, 2018, 325, 309-315.	4.2	14
21	Role of templating agents in the spray drying and postcrystallization of lactose for the production of highly porous powders. Drying Technology, 2018, 36, 1882-1891.	3.1	16
22	Catalytic conversion of furfural to methyl levulinate in a single-step route over Zr/SBA-15 in near-critical methanol. Chemical Engineering Journal, 2018, 333, 434-442.	12.7	27
23	Effect of spray-drying temperature on the formation of flower-like lactose for griseofulvin loading. European Journal of Pharmaceutical Sciences, 2018, 111, 534-539.	4.0	24
24	Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in near-critical isopropanol over Cu/MgO-Al2O3 catalyst. Molecular Catalysis, 2018, 445, 94-101.	2.0	79
25	Review of some common commercial and noncommercial lab-scale spray dryers and preliminary tests for a prototype new spray dryer. Drying Technology, 2018, 36, 1900-1912.	3.1	12
26	Improving the dissolution rate of hydrophobic drugs through encapsulation in porous lactose as a new biocompatible porous carrier. International Journal of Pharmaceutics, 2017, 521, 204-213.	5.2	17
27	Template-directed flower-like lactose with micro-meso-macroporous structure. Materials and Design, 2017, 117, 178-184.	7.0	22
28	Hollow flower-like lactose particles as potential drug carriers: Effect of particle size and feed concentration. Powder Technology, 2017, 320, 1-6.	4.2	12
29	Redox (pro-oxidant/antioxidant) balance in the spray drying of orange peel extracts. Drying Technology, 2016, 34, 1719-1725.	3.1	6
30	A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol. European Journal of Pharmaceutical Sciences, 2016, 83, 52-61.	4.0	30
31	Facile fabrication of mesoporous CaO sorbents using simple salt as a pore template in a template-assisted and spray-drying synthesis method. Chemical Engineering Journal, 2016, 291, 1-11.	12.7	13
32	Nano-confinement of acetaminophen into porous mannitol through adsorption method. Microporous and Mesoporous Materials, 2016, 227, 95-103.	4.4	9
33	Incorporation of acetaminophen as an active pharmaceutical ingredient into porous lactose. International Journal of Pharmaceutics, 2016, 499, 217-227.	5.2	32
34	Performance Comparison of Two Solar Kiln Designs for Wood Drying Using a Numerical Simulation. Drying Technology, 2015, 33, 634-645.	3.1	13
35	The role of acidity in crystallization of lactose and templating approach for highly-porous lactose production. Journal of Food Engineering, 2015, 164, 1-9.	5.2	14
36	The use of CTAB and citric acid as templating agents in production of highly-porous lactose particles. Journal of Food Engineering, 2015, 156, 59-66.	5.2	7

TIMOTHY LANGRISH

#	Article	IF	CITATIONS
37	Spray drying and post-processing production of highly-porous lactose particles using sugars as templating agents. Powder Technology, 2015, 283, 171-177.	4.2	23
38	Embodied Energy and Carbon Analysis of Solar Kilns for Wood Drying. Drying Technology, 2015, 33, 973-985.	3.1	11
39	Highly-porous mannitol particle production using a new templating approach. Food Research International, 2015, 67, 44-51.	6.2	15
40	Developing a new production process for high-porosity lactose particles with high degrees of crystallinity. Powder Technology, 2015, 272, 45-53.	4.2	23
41	Effect of lactic acid in-process crystallization of lactose/protein powders during spray drying. Journal of Food Engineering, 2014, 137, 88-94.	5.2	45
42	Numerical Simulation of a Solar Kiln Design for Drying Timber with Different Geographical and Climatic Conditions in Australia. Drying Technology, 2014, 32, 1632-1639.	3.1	25
43	Improving Process Yield by Adding WPI to Lactose During Crystallization and Spray Drying Under High-Humidity Conditions. Drying Technology, 2013, 31, 393-404.	3.1	31
44	The Effect of Different Plasticizers on Lactose Crystallization During Spray Drying. Drying Technology, 2013, 31, 1856-1862.	3.1	1
45	Interpreting the Activated Rate Theory for Solid-Phase Crystallization: Comparing Lactose and Sucrose. Drying Technology, 2013, 31, 1320-1333.	3.1	3
46	Combined Crystallization and Drying in a Pilot-Scale Spray Dryer. Drying Technology, 2012, 30, 998-1007.	3.1	23
47	CO2 capture using whey protein isolate. Chemical Engineering Journal, 2011, 171, 1069-1081.	12.7	25
48	Effect of collapse on fitted diffusion coefficients for Victorian ash eucalypts. Wood Science and Technology, 2008, 42, 535-549.	3.2	2
49	Effect of pre-drying schedule ramping on collapse recovery and internal checking with Victorian Ash eucalypts. Wood Science and Technology, 2008, 42, 473-492.	3.2	14
50	Effect of mean moisture content on the steam reconditioning of collapsed Eucalyptus regnans. Wood Science and Technology, 2007, 41, 87-98.	3.2	5
51	Kiln-Drying of Lumber. Springer Series in Wood Science, 2000, , .	0.8	89
52	Wall deposition experiments in a new spray dryer. , 0, , .		0