Nuo Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/714515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiplexed Fluorescence Resonance Energy Transfer Aptasensor between Upconversion Nanoparticles and Graphene Oxide for the Simultaneous Determination of Mycotoxins. Analytical Chemistry, 2012, 84, 6263-6270.	6.5	303
2	Simultaneous Aptasensor for Multiplex Pathogenic Bacteria Detection Based on Multicolor Upconversion Nanoparticles Labels. Analytical Chemistry, 2014, 86, 3100-3107.	6.5	285
3	Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosensors and Bioelectronics, 2015, 74, 872-877.	10.1	242
4	Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control, 2015, 50, 597-604.	5.5	188
5	Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Analytica Chimica Acta, 2012, 723, 1-6.	5.4	181
6	Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples. Journal of Agricultural and Food Chemistry, 2018, 66, 1949-1954.	5.2	148
7	Selection and Characterization of Aptamers against Salmonella typhimurium Using Whole-Bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). Journal of Agricultural and Food Chemistry, 2013, 61, 3229-3234.	5.2	144
8	Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels. Analyst, The, 2011, 136, 2306.	3.5	132
9	Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosensors and Bioelectronics, 2011, 30, 35-42.	10.1	129
10	Selection and Identification of a DNA Aptamer Targeted to Vibrio parahemolyticus. Journal of Agricultural and Food Chemistry, 2012, 60, 4034-4038.	5.2	129
11	Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Mikrochimica Acta, 2015, 182, 917-923.	5.0	129
12	Advances in aptasensors for the detection of food contaminants. Analyst, The, 2016, 141, 3942-3961.	3.5	118
13	A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins, 2016, 8, 176.	3.4	114
14	Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Mikrochimica Acta, 2014, 181, 967-974.	5.0	106
15	Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. International Journal of Food Microbiology, 2016, 218, 38-43.	4.7	105
16	Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Mikrochimica Acta, 2016, 183, 337-344.	5.0	105
17	A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta, 2014, 127, 163-168.	5.5	104
18	Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin. Analytical Biochemistry, 2016, 508, 58-64.	2.4	84

#	Article	IF	CITATIONS
19	Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+. Talanta, 2014, 128, 327-336.	5.5	83
20	Colorimetric Aptasensor Based on Truncated Aptamer and Trivalent DNAzyme for <i>Vibrio parahemolyticus</i> Determination. Journal of Agricultural and Food Chemistry, 2019, 67, 2313-2320.	5.2	81
21	A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Analytica Chimica Acta, 2013, 804, 151-158.	5.4	76
22	A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Mikrochimica Acta, 2016, 183, 1909-1916.	5.0	76
23	Selection, identification, and application of Aflatoxin B1 aptamer. European Food Research and Technology, 2014, 238, 919-925.	3.3	74
24	Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chemistry, 2015, 166, 623-629.	8.2	72
25	Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Scientific Reports, 2016, 6, 21665.	3.3	71
26	Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnology Advances, 2022, 55, 107902.	11.7	67
27	Colorimetric Aptasensor Based on Enzyme for the Detection of <i>Vibrio parahemolyticus</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 7849-7854.	5.2	66
28	A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Mikrochimica Acta, 2018, 185, 497.	5.0	64
29	Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe 2 O 4 -reduced graphene oxide nanostructures as an effective peroxidase mimetics. International Journal of Food Microbiology, 2017, 261, 42-48.	4.7	62
30	An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Biosensors and Bioelectronics, 2017, 91, 538-544.	10.1	61
31	Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly. Talanta, 2017, 165, 412-418.	5.5	60
32	An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection. Analytica Chimica Acta, 2017, 959, 83-90.	5.4	59
33	Graphene oxide wrapped Fe3O4@Au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy. Mikrochimica Acta, 2017, 184, 2653-2660.	5.0	59
34	A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Analytica Chimica Acta, 2013, 782, 59-66.	5.4	57
35	Preparation and characterization of k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation. Food Chemistry, 2021, 364, 130441.	8.2	56
36	Vibrio parahaemolyticus detection aptasensor using surface-enhanced Raman scattering. Food Control, 2016, 63, 122-127.	5.5	54

#	Article	IF	CITATIONS
37	Selection, Identification, and Binding Mechanism Studies of an ssDNA Aptamer Targeted to Different Stages of <i>E. coli O157:H7</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 5677-5682.	5.2	54
38	Magnetic Separation-Based Multiple SELEX for Effectively Selecting Aptamers against Saxitoxin, Domoic Acid, and Tetrodotoxin. Journal of Agricultural and Food Chemistry, 2018, 66, 9801-9809.	5.2	51
39	A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118103.	3.9	51
40	A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk. Biosensors and Bioelectronics, 2015, 74, 170-176.	10.1	50
41	Selection and Application of ssDNA Aptamers against Clenbuterol Hydrochloride Based on ssDNA Library Immobilized SELEX. Journal of Agricultural and Food Chemistry, 2017, 65, 1771-1777.	5.2	48
42	CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti3C2Tx MXene as the enhanced quencher. Journal of Hazardous Materials, 2022, 433, 128750.	12.4	48
43	In vitro selection of a DNA aptamer targeted against Shigella dysenteriae. Journal of Microbiological Methods, 2013, 94, 170-174.	1.6	46
44	Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1. Mikrochimica Acta, 2014, 181, 1317-1324.	5.0	44
45	An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine. Analytica Chimica Acta, 2017, 961, 100-105.	5.4	44
46	Assessing the toxicity inÂvitro of degradation products from deoxynivalenol photocatalytic degradation by using upconversion nanoparticles@TiO2 composite. Chemosphere, 2020, 238, 124648.	8.2	44
47	High-affinity aptamer of allergen β-lactoglobulin: Selection, recognition mechanism and application. Sensors and Actuators B: Chemical, 2021, 340, 129956.	7.8	43
48	Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin A. Analytical Methods, 2014, 6, 690-697.	2.7	42
49	Gold Nanoparticle-Based Fluorescence Resonance Energy Transfer Aptasensor for Ochratoxin A Detection. Analytical Letters, 2012, 45, 714-723.	1.8	41
50	Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline. Analytical Biochemistry, 2015, 489, 44-49.	2.4	40
51	Mn2+-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Analytical and Bioanalytical Chemistry, 2016, 408, 3823-3831.	3.7	40
52	Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles. Mikrochimica Acta, 2020, 187, 222.	5.0	40
53	Photocatalysis and degradation products identification of deoxynivalenol in wheat using upconversion nanoparticles@TiO2 composite. Food Chemistry, 2020, 323, 126823.	8.2	40
54	A Visual and Sensitive Detection of Escherichia coli Based on Aptamer and Peroxidase-like Mimics of Copper-Metal Organic Framework Nanoparticles. Food Analytical Methods, 2020, 13, 1433-1441.	2.6	38

#	Article	IF	CITATIONS
55	Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta, 2021, 230, 122349.	5.5	38
56	Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles. Analytical and Bioanalytical Chemistry, 2015, 407, 7907-7915.	3.7	37
57	A chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk. Analytical Methods, 2016, 8, 7929-7936.	2.7	37
58	Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels. International Journal of Food Microbiology, 2016, 237, 172-179.	4.7	37
59	A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles. Talanta, 2016, 158, 246-253.	5.5	35
60	Selection and application of ssDNA aptamers against spermine based on Capture-SELEX. Analytica Chimica Acta, 2019, 1081, 168-175.	5.4	35
61	Fluorometric determination of lipopolysaccharides via changes of the graphene oxide-enhanced fluorescence polarization caused by truncated aptamers. Mikrochimica Acta, 2019, 186, 173.	5.0	35
62	Magnetic Nanoparticles-based Aptasensor Using Gold Nanoparticles as Colorimetric Probes for the Detection of Salmonella typhimurium. Analytical Sciences, 2016, 32, 431-436.	1.6	34
63	Upconversion Nanoparticles Assembled with Gold Nanourchins as Luminescence and Surface-Enhanced Raman Scattering Dual-Mode Aptasensors for Detection of Ochratoxin A. ACS Applied Nano Materials, 2021, 4, 8231-8240.	5.0	34
64	A chemiluminescent aptasensor based on rolling circle amplification and Co2+/N-(aminobutyl)-N-(ethylisoluminol) functional flowerlike gold nanoparticles for Salmonella typhimurium detection. Talanta, 2017, 164, 275-282.	5.5	32
65	A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. Analytical Biochemistry, 2014, 454, 1-6.	2.4	31
66	A colorimetric aptamer-based method for detection of cadmium using the enhanced peroxidase-like activity of Au–MoS2 nanocomposites. Analytical Biochemistry, 2020, 608, 113844.	2.4	31
67	Highly sensitive aptasensor for oxytetracycline based on upconversion and magnetic nanoparticles. Analytical Methods, 2015, 7, 2585-2593.	2.7	30
68	An aptasensor based on fluorescence resonance energy transfer for multiplexed pathogenic bacteria determination. Analytical Methods, 2016, 8, 1390-1395.	2.7	30
69	GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B1 with low dosage aptamer probe. Analytical and Bioanalytical Chemistry, 2019, 411, 1107-1115.	3.7	29
70	Photocatalytic degradation of microcystin-LR with a nanostructured photocatalyst based on upconversion nanoparticles@TiO2 composite under simulated solar lights. Scientific Reports, 2017, 7, 14435.	3.3	28
71	Simultaneous detection of fumonisin B1 and ochratoxin A using dual-color, time-resolved luminescent nanoparticles (NaYF4: Ce, Tb and NH2-Eu/DPA@SiO2) as labels. Analytical and Bioanalytical Chemistry, 2019, 411, 1453-1465.	3.7	28
72	SERS aptasensor detection of Salmonella typhimurium using a magnetic gold nanoparticle and gold nanoparticle and gold nanoparticle based sandwich structure. Analytical Methods, 2016, 8, 8099-8105.	2.7	27

#	Article	IF	CITATIONS
73	Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles. Mikrochimica Acta, 2017, 184, 4235-4242.	5.0	27
74	A Colorimetric Aptamer Sensor Based on the Enhanced Peroxidase Activity of Functionalized Graphene/Fe3O4-AuNPs for Detection of Lead (II) Ions. Catalysts, 2020, 10, 600.	3.5	27
75	Polydimethylsiloxane Gold Nanoparticle Composite Film as Structure for Aptamer-Based Detection of Vibrio parahaemolyticus by Surface-Enhanced Raman Spectroscopy. Food Analytical Methods, 2019, 12, 595-603.	2.6	26
76	Surface-enhanced Raman spectroscopic–based aptasensor for Shigella sonnei using a dual-functional metal complex-ligated gold nanoparticles dimer. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110940.	5.0	26
77	Double-enzymes-mediated fluorescent assay for sensitive determination of organophosphorus pesticides based on the quenching of upconversion nanoparticles by Fe3+. Food Chemistry, 2021, 345, 128809.	8.2	26
78	Fluorescence resonance energy transfer-based aptamer biosensors for bisphenol A using lanthanide-doped KGdF ₄ nanoparticles. Analytical Methods, 2015, 7, 5186-5192.	2.7	24
79	A competitive fluorescent aptasensor for okadaic acid detection assisted by rolling circle amplification. Mikrochimica Acta, 2017, 184, 2893-2899.	5.0	24
80	DNA aptamer selection and aptamer-based fluorometric displacement assay for the hepatotoxin microcystin-RR. Mikrochimica Acta, 2016, 183, 2555-2562.	5.0	21
81	Selection, identification, and application of dual DNA aptamers against Shigella sonnei. Analytical Methods, 2015, 7, 3625-3631.	2.7	20
82	Homogeneous time-resolved FRET assay for the detection of Salmonella typhimurium using aptamer-modified NaYF4:Ce/Tb nanoparticles and a fluorescent DNA label. Mikrochimica Acta, 2017, 184, 4021-4027.	5.0	19
83	Colorimetric aptasensor for the detection of mercury based on signal intensification by rolling circle amplification. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117387.	3.9	19
84	Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. Mikrochimica Acta, 2019, 186, 401.	5.0	17
85	Selection and characterization, application of a DNA aptamer targeted to Streptococcus pyogenes in cooked chicken. Analytical Biochemistry, 2018, 551, 37-42.	2.4	16
86	Surface-enhanced Raman spectroscopy relying on bimetallic Au–Ag nanourchins for the detection of the food allergen β-lactoglobulin. Talanta, 2022, 245, 123445.	5.5	16
87	Deoxynivalenol photocatalytic detoxification products alleviate intestinal barrier damage and gut flora disorder in BLAB/c mice. Food and Chemical Toxicology, 2021, 156, 112510.	3.6	15
88	Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Critical Reviews in Analytical Chemistry, 2024, 54, 355-388.	3.5	14
89	Deoxynivalenol-induced cell apoptosis monitoring using a cytochrome c-specific ï¬,uorescent probe based on a photoinduced electron transfer reaction. Journal of Hazardous Materials, 2021, 415, 125638. 	12.4	12
90	Signal amplification of SiO2 nanoparticle loaded horseradish peroxidase for colorimetric detection of lead ions in water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120342.	3.9	12

Nuo Duan

#	Article	IF	CITATIONS
91	Application of PEC-CdSe@ZnS quantum dots for ROS imaging and evaluation of deoxynivalenol-mediated oxidative stress in living cells. Food and Chemical Toxicology, 2020, 146, 111834.	3.6	11
92	Selection, truncation and fluorescence polarization based aptasensor for Weissella viridescens detection. Talanta, 2022, 246, 123499.	5.5	11
93	Detoxification of DON by photocatalytic degradation and quality evaluation of wheat. RSC Advances, 2019, 9, 34351-34358.	3.6	10
94	Protective Effects of Ferulic Acid on Deoxynivalenol-Induced Toxicity in IPEC-J2 Cells. Toxins, 2022, 14, 275.	3.4	10
95	Homogeneous time-resolved fluorescence assay for the detection of ricin using an aptamer immobilized on europium-doped KGdF4 nanoparticles and graphene oxide as a quencher. Mikrochimica Acta, 2015, 182, 1035-1043.	5.0	9
96	Fluorometric determination of Vibrio parahaemolyticus using an FOF1-ATPase-based aptamer and labeled chromatophores. Mikrochimica Acta, 2018, 185, 304.	5.0	8
97	Effectively Selecting Aptamers for Targeting Aromatic Biogenic Amines and Their Application in Aptasensing Establishment. Journal of Agricultural and Food Chemistry, 2021, 69, 14671-14679.	5.2	8
98	Screening and application of a broad-spectrum aptamer for acyclic guanosine analogues. Analytical and Bioanalytical Chemistry, 2021, 413, 4855-4863.	3.7	7
99	The isolation of high-affinity ssDNA aptamer for the detection of ribavirin in chicken. Analytical Methods, 2021, 13, 3110-3117.	2.7	7
100	Quantum Dot-Based F0F1-ATPase Aptasensor for Vibrio parahaemolyticus Detection. Food Analytical Methods, 2019, 12, 1849-1857.	2.6	4
101	Fluorescence imaging of glutathione with aptasensor and monitoring deoxynivalenol-induced oxidative stress in living cells. Sensors and Actuators B: Chemical, 2022, 354, 131190.	7.8	4
102	Ultrasensitive Chemiluminescent Detection ofSalmonellawith DNA Hybridization and Silver Amplification of Nanogold Labels. Analytical Letters, 2011, 44, 1063-1076.	1.8	2