Li Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7144866/publications.pdf

Version: 2024-02-01

		126907	206112
45	2,455	33	48
papers	citations	h-index	g-index
53	53	53	3404
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	LncRNA LEF1-AS1/LEF1/FUT8 Axis Mediates ColorectalÂCancer Progression by Regulating $\hat{l}\pm 1$, 6-Fucosylationvia Wnt/ \hat{l}^2 -Catenin Pathway. Digestive Diseases and Sciences, 2022, 67, 2182-2194.	2.3	11
2	Exosome-derived SNHG16 sponging miR-4500 activates HUVEC angiogenesis by targeting GALNT1 via PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Journal of Physiology and Biochemistry, 2021, 77, 667-682.	3.0	23
3	LncRNA MEG3 mediates renal cell cancer progression by regulating ST3Gal1 transcription and EGFR sialylation. Journal of Cell Science, 2020, 133, .	2.0	15
4	LncRNA MEG3 contributes to drug resistance in acute myeloid leukemia by positively regulating ALG9 through sponging miRâ€155. International Journal of Laboratory Hematology, 2020, 42, 464-472.	1.3	36
5	Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway. Journal of Experimental and Clinical Cancer Research, 2020, 39, 54.	8.6	91
6	The HOTAIR/miR-214/ST6GAL1 crosstalk modulates colorectal cancer procession through mediating sialylated c-Met via JAK2/STAT3 cascade. Journal of Experimental and Clinical Cancer Research, 2019, 38, 455.	8.6	60
7	MiR-29b/Sp1/FUT4 axis modulates the malignancy of leukemia stem cells by regulating fucosylation via Wnt/β-catenin pathway in acute myeloid leukemia. Journal of Experimental and Clinical Cancer Research, 2019, 38, 200.	8.6	36
8	A combination of chicken embryo extract and a nutritional supplement protect a rat model of aging against <scp>d</scp> -galactose-induced dysfunction of mitochondria and autophagy. Food and Function, 2019, 10, 2774-2784.	4.6	8
9	Combination of chick embryo and nutrient mixture prevent D-galactose-induced cognitive deficits, immune impairment and oxidative stress in aging rat model. Scientific Reports, 2019, 9, 4092.	3.3	9
10	HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 750-760.	4.1	60
11	The potential of exosomes derived from colorectal cancer as a biomarker. Clinica Chimica Acta, 2019, 490, 186-193.	1.1	43
12	LncRNA ST3Gal6â€AS1/ST3Gal6 axis mediates colorectal cancer progression by regulating αâ€⊋,3 sialylation <i>via</i> Pl3K/Akt signaling. International Journal of Cancer, 2019, 145, 450-460.	5.1	45
13	miR-140-5p/miR-149 Affects Chondrocyte Proliferation, Apoptosis, and Autophagy by Targeting FUT1 in Osteoarthritis. Inflammation, 2018, 41, 959-971.	3.8	75
14	MiRâ€193aâ€3p and miRâ€224 mediate renal cell carcinoma progression by targeting alphaâ€2,3â€sialyltransferas IV and the phosphatidylinositol 3 kinase/Akt pathway. Molecular Carcinogenesis, 2018, 57, 1067-1077.	se 2.7	39
15	Nutritional support contributes to recuperation in a rat model of aplastic anemia by enhancing mitochondrial function. Nutrition, 2018, 46, 67-77.	2.4	5
16	MiR-26a and miR-26b mediate osteoarthritis progression by targeting FUT4 via NF-κB signaling pathway. International Journal of Biochemistry and Cell Biology, 2018, 94, 79-88.	2.8	44
17	LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. Journal of Experimental and Clinical Cancer Research, 2018, 37, 316.	8.6	81
18	Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. Journal of Hematology and Oncology, 2018, 11, 89.	17.0	154

#	Article	IF	Citations
19	The positive effect of chick embryo and nutrient mixture on bone marrow-derived mesenchymal stem cells from aging rats. Scientific Reports, 2018, 8, 7051.	3.3	2
20	Long noncoding <scp>RNA HOTAIR</scp> promotes renal cell carcinoma malignancy through alphaâ€2, 8â€sialyltransferase 4 by sponging micro <scp>RNA</scp> â€124. Cell Proliferation, 2018, 51, e12507.	5.3	45
21	Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2 \hat{l}^2 -catenin axis. Cell Death and Disease, 2018, 9, 711.	6.3	107
22	LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death and Disease, 2018, 9, 722.	6.3	183
23	Downregulation of miR-224 and let-7i contribute to cell survival and chemoresistance in chronic myeloid leukemia cells by regulating ST3GAL IV expression. Gene, 2017, 626, 106-118.	2.2	34
24	MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death and Disease, 2017, 8, e2796-e2796.	6.3	146
25	miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and Pl3K/AKT Pathway. Digestive Diseases and Sciences, 2017, 62, 3447-3459.	2.3	48
26	MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. International Journal of Biochemistry and Cell Biology, 2017, 90, 48-58.	2.8	38
27	Upregulation of microRNAâ€135b and microRNAâ€182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Molecular Carcinogenesis, 2017, 56, 2669-2680.	2.7	73
28	miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. Cell Death and Disease, 2017, 8, e2968-e2968.	6.3	101
29	Tumor-suppressive miR-26a and miR-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer. Cell Death and Disease, 2017, 8, e2892-e2892.	6.3	88
30	Comprehensive N-glycan profiles of hepatocellular carcinoma reveal association of fucosylation with tumor progression and regulation of FUT8 by microRNAs. Oncotarget, 2016, 7, 61199-61214.	1.8	61
31	miR-493-5p attenuates the invasiveness and tumorigenicity in human breast cancer by targeting FUT4. Oncology Reports, 2016, 36, 1007-1015.	2.6	53
32	Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. Cell Death and Disease, 2016, 7, e2561-e2561.	6.3	69
33	Alpha-2, 3-sialyltransferases regulate the multidrug resistance of chronic myeloid leukemia through miR-4701-5p targeting ST3GAL1. Laboratory Investigation, 2016, 96, 731-740.	3.7	19
34	MicroRNAâ€106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. IUBMB Life, 2016, 68, 764-775.	3.4	43
35	Increased fucosylation has a pivotal role in multidrug resistance of breast cancer cells through miR-224-3p targeting FUT4. Gene, 2016, 578, 232-241.	2.2	52
36	CHST11/13 Regulate the Metastasis and Chemosensitivity of Human Hepatocellular Carcinoma Cells Via Mitogen-Activated Protein Kinase Pathway. Digestive Diseases and Sciences, 2016, 61, 1972-1985.	2.3	18

#	Article	IF	CITATIONS
37	Upregulation of miR-181c inhibits chemoresistance by targeting <i>ST8SIA4</i> in chronic myelocytic leukemia. Oncotarget, 2016, 7, 60074-60086.	1.8	54
38	\hat{l}_{\pm} -2,8-sialyltransferase is involved in the development of multidrug resistance via PI3K/Akt pathway in human chronic myeloid leukemia. IUBMB Life, 2015, 67, 77-87.	3.4	41
39	Axl as a downstream effector of TGF- \hat{l}^21 via PI3K/Akt-PAK1 signaling pathway promotes tumor invasion and chemoresistance in breast carcinoma. Tumor Biology, 2015, 36, 1115-1127.	1.8	34
40	Modification of Sialylation Mediates the Invasive Properties and Chemosensitivity of Human Hepatocellular Carcinoma. Molecular and Cellular Proteomics, 2014, 13, 520-536.	3.8	61
41	ST6GalNAcII mediates the invasive properties of breast carcinoma through PI3K/Akt/NFâ€PB signaling pathway. IUBMB Life, 2014, 66, 300-308.	3.4	34
42	Functional roles of glycogene and Nâ€glycan in multidrug resistance of human breast cancer cells. IUBMB Life, 2013, 65, 409-422.	3.4	38
43	Glycomic alterations are associated with multidrug resistance in human leukemia. International Journal of Biochemistry and Cell Biology, 2012, 44, 1244-1253.	2.8	40
44	Nutritional support in the treatment of aplastic anemia. Nutrition, 2011, 27, 1194-1201.	2.4	12
45	Nutritional rehabilitation of mitochondrial aberrations in aplastic anaemia. British Journal of Nutrition, 2011, 105, 1180-1187.	2.3	5