ä¼ æ°å,...

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143398/publications.pdf Version: 2024-02-01

		22153	20961
229	15,490	59	115
papers	citations	h-index	g-index
232	232	232	9770
all docs	docs citations	times ranked	citing authors

×1/1- FS

#	Article	IF	CITATIONS
1	Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6, 1019-1022.	18.8	1,270
2	Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 2016, 9, 38-41.	12.9	948
3	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	27.8	814
4	Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 2011, 8, 284-293.	2.9	681
5	Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017, 45, 223-243.	11.0	607
6	A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China. PLoS ONE, 2012, 7, e31782.	2.5	392
7	Soil and water conservation on the Loess Plateau in China: review and perspective. Progress in Physical Geography, 2007, 31, 389-403.	3.2	380
8	Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a <scp>B</scp> udyko hydrological model in <scp>C</scp> hina's <scp>L</scp> oess <scp>P</scp> lateau. Water Resources Research, 2015, 51, 6500-6519.	4.2	370
9	How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China's Loess Plateau. Scientific Reports, 2013, 3, 2846.	3.3	328
10	Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 2018, 214, 59-72.	11.0	322
11	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	29.7	281
12	Drivers and impacts of changes in China's drylands. Nature Reviews Earth & Environment, 2021, 2, 858-873.	29.7	255
13	Unravelling the complexity in achieving the 17 sustainable-development goals. National Science Review, 2019, 6, 386-388.	9.5	245
14	Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China's Loess Plateau. Science of the Total Environment, 2016, 569-570, 1032-1039.	8.0	218
15	Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecological Research, 2007, 22, 641-648.	1.5	199
16	Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Science of the Total Environment, 2017, 607-608, 1250-1263.	8.0	199
17	Recent ecological transitions in China: greening, browning and influential factors. Scientific Reports, 2015, 5, 8732.	3.3	189
18	Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environment, 2016, 557-558, 331-342.	8.0	178

ļ⁻Æ⁰ Å,...

#	Article	IF	CITATIONS
19	Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 2017, 609, 27-37.	8.0	170
20	Ecosystem services in changing land use. Journal of Soils and Sediments, 2015, 15, 833-843.	3.0	161
21	Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Science of the Total Environment, 2019, 678, 565-573.	8.0	154
22	Excessive Afforestation and Soil Drying on China's Loess Plateau. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 923-935.	3.0	147
23	Chinese ecosystem research network: Progress and perspectives. Ecological Complexity, 2010, 7, 225-233.	2.9	146
24	Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes. Landscape Ecology, 2014, 29, 1697-1708.	4.2	145
25	Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Global Change Biology, 2021, 27, 5848-5864.	9.5	127
26	Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Science Advances, 2020, 6, eaaz3513.	10.3	117
27	Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Science of the Total Environment, 2019, 650, 1029-1040.	8.0	115
28	Check Dam in the Loess Plateau of China: Engineering for Environmental Services and Food Security Environmental Science & Technology, 2011, 45, 10298-10299.	10.0	114
29	Decoupling of SDGs followed by re-coupling as sustainable development progresses. Nature Sustainability, 2022, 5, 452-459.	23.7	107
30	A new mobileâ€immobile model for reactive solute transport with scaleâ€dependent dispersion. Water Resources Research, 2010, 46, .	4.2	106
31	Evolution and effects of the social-ecological system over a millennium in China's Loess Plateau. Science Advances, 2020, 6, .	10.3	105
32	Driving forces of changes in the water and sediment relationship in the Yellow River. Science of the Total Environment, 2017, 576, 453-461.	8.0	102
33	Local-Scale Spatial Variability of Soil Organic Carbon and its Stock in the Hilly Area of the Loess Plateau, China. Quaternary Research, 2010, 73, 70-76.	1.7	101
34	Temporal variation and spatial scale dependency of ecosystem service interactions: a case study on the central Loess Plateau of China. Landscape Ecology, 2017, 32, 1201-1217.	4.2	100
35	Source-sink landscape theory and its ecological significance. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2008, 3, 131-136.	0.2	97
36	Half century change of interactions among ecosystem services driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau. Science of the Total Environment, 2019, 651, 2546-2557.	8.0	96

#	Article	IF	CITATIONS
37	Balancing multiple ecosystem services in conservation priority setting. Landscape Ecology, 2015, 30, 535-546.	4.2	95
38	Greening China Naturally. Ambio, 2011, 40, 828-831.	5.5	90
39	Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 2019, 666, 685-693.	8.0	90
40	Soil moisture–plant interactions: an ecohydrological review. Journal of Soils and Sediments, 2019, 19, 1-9.	3.0	90
41	Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China. Science of the Total Environment, 2016, 548-549, 410-420.	8.0	89
42	Spatially explicit quantification of the interactions among ecosystem services. Landscape Ecology, 2017, 32, 1181-1199.	4.2	86
43	Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China. Hydrological Processes, 2009, 23, 1780-1791.	2.6	83
44	Ecological effects and potential risks of the water diversion project in the Heihe River Basin. Science of the Total Environment, 2018, 619-620, 794-803.	8.0	83
45	Reducing soil erosion by improving community functional diversity in semiâ€arid grasslands. Journal of Applied Ecology, 2015, 52, 1063-1072.	4.0	81
46	Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Ecological Research, 2008, 23, 511-518.	1.5	79
47	A method to identify the variable ecosystem services relationship across time: a case study on Yanhe Basin, China. Landscape Ecology, 2014, 29, 1689-1696.	4.2	75
48	The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China. Science of the Total Environment, 2016, 571, 688-698.	8.0	75
49	Remote sensing of ecosystem services: An opportunity for spatially explicit assessment. Chinese Geographical Science, 2010, 20, 522-535.	3.0	74
50	Landscape functional zoning at a county level based on ecosystem services bundle: Methods comparison and management indication. Journal of Environmental Management, 2019, 249, 109315.	7.8	74
51	Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture. Science of the Total Environment, 2020, 698, 134165.	8.0	71
52	Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nature Ecology and Evolution, 2021, 5, 10-13.	7.8	69
53	Effects of revegetation and precipitation gradient on soil carbon and nitrogen variations in deep profiles on the Loess Plateau of China. Science of the Total Environment, 2018, 626, 399-411.	8.0	68
54	Identifying ecological security patterns based on the supply, demand and sensitivity of ecosystem service: A case study in the Yellow River Basin, China. Journal of Environmental Management, 2022, 315, 115158.	7.8	68

#	Article	IF	CITATIONS
55	Precipitation gradient determines the tradeoff between soil moisture and soil organic carbon, total nitrogen, and species richness in the Loess Plateau, China. Science of the Total Environment, 2017, 575, 1538-1545.	8.0	65
56	Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China. Environmental Geology, 2001, 41, 113-120.	1.2	64
57	Landscape ecology: Coupling of pattern, process, and scale. Chinese Geographical Science, 2011, 21, 385-391.	3.0	64
58	SAORES: a spatially explicit assessment and optimization tool for regional ecosystem services. Landscape Ecology, 2015, 30, 547-560.	4.2	63
59	Development of a new index for integrating landscape patterns with ecological processes at watershed scale. Chinese Geographical Science, 2009, 19, 37-45.	3.0	61
60	Ecosystem management based on ecosystem services and human activities: a case study in the Yanhe watershed. Sustainability Science, 2012, 7, 17-32.	4.9	60
61	Classification–coordination–collaboration: a systems approach for advancing Sustainable Development Goals. National Science Review, 2020, 7, 838-840.	9.5	60
62	The multi-scale spatial variance of soil moisture in the semi-arid Loess Plateau of China. Journal of Soils and Sediments, 2012, 12, 694-703.	3.0	58
63	A systematic approach is needed to contain COVID-19 globally. Science Bulletin, 2020, 65, 876-878.	9.0	57
64	Virtual Environments Begin to Embrace Processâ€based Geographic Analysis. Transactions in GIS, 2015, 19, 493-498.	2.3	56
65	Regional development boundary of China's Loess Plateau: Water limit and land shortage. Land Use Policy, 2018, 74, 130-136.	5.6	56
66	Land use change and anthropogenic driving forces: A case study in Yanhe River Basin. Chinese Geographical Science, 2011, 21, 587-599.	3.0	55
67	Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services. Science of the Total Environment, 2017, 607-608, 1376-1380.	8.0	55
68	Untangling the interactions among the Sustainable Development Goals in China. Science Bulletin, 2022, 67, 977-984.	9.0	55
69	Scale effects of sediment retention, water yield, and net primary production: A caseâ€study of the Chinese Loess Plateau. Land Degradation and Development, 2020, 31, 1408-1421.	3.9	52
70	The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Current Opinion in Environmental Sustainability, 2021, 48, 17-28.	6.3	52
71	Biophysical controls on canopy transpiration in a black locust (<scp><i>Robinia) Tj ETQq1 1 0.784314 rgBT /Ov 1068-1081.</i></scp>	erlock 10 2.4	Tf 50 107 To 48
72	Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships. Science of the Total Environment, 2017, 607-608, 911-919.	8.0	48

#	Article	IF	CITATIONS
73	Coupling human and natural systems for sustainability: experience from China's Loess Plateau. Earth System Dynamics, 2022, 13, 795-808.	7.1	48
74	Effects of soil physicochemical properties and stand age on fine root biomass and vertical distribution of plantation forests in the Loess Plateau of China. Ecological Research, 2012, 27, 827-836.	1.5	45
75	Soil Moisture Variations with Land Use along the Precipitation Gradient in the North–South Transect of the Loess Plateau. Land Degradation and Development, 2017, 28, 926-935.	3.9	45
76	Contrasting impacts of forests on cloud cover based on satellite observations. Nature Communications, 2022, 13, 670.	12.8	42
77	Representation of critical natural capital in China. Conservation Biology, 2017, 31, 894-902.	4.7	41
78	Vegetation patterns influence on soil microbial biomass and functional diversity in a hilly area of the Loess Plateau, China. Journal of Soils and Sediments, 2010, 10, 1082-1091.	3.0	40
79	Driving forces and their contribution to the recent decrease in sediment flux to ocean of major rivers in China. Science of the Total Environment, 2018, 634, 534-541.	8.0	40
80	Multiâ€ŧemporal scale changes of streamflow and sediment load in a loess hilly watershed of China. Hydrological Processes, 2016, 30, 365-382.	2.6	39
81	Structure, function, and dynamic mechanisms of coupled human–natural systems. Current Opinion in Environmental Sustainability, 2018, 33, 87-91.	6.3	39
82	Driving Factors of Land Change in China's Loess Plateau: Quantification Using Geographically Weighted Regression and Management Implications. Remote Sensing, 2020, 12, 453.	4.0	39
83	Temporal Variations of Flow–sediment Relationships in a Highly Erodible Catchment of the Loess Plateau, China. Land Degradation and Development, 2016, 27, 758-772.	3.9	38
84	Quantifying the effects of human activities and climate variability on vegetation cover change in a hyperâ€arid endorheic basin. Land Degradation and Development, 2018, 29, 3294-3304.	3.9	38
85	Spatiotemporal changes and driving forces of ecosystem vulnerability in the Yangtze River Basin, China: Quantification using habitat-structure-function framework. Science of the Total Environment, 2022, 835, 155494.	8.0	38
86	GIS-based analysis for hotspot identification of tradeoff between ecosystem services: A case study in Yanhe Basin, China. Chinese Geographical Science, 2016, 26, 466-477.	3.0	36
87	Spatial variation and influencing factors of the effectiveness of afforestation in China's Loess Plateau. Science of the Total Environment, 2021, 771, 144904.	8.0	36
88	Mapping the complexity of the food-energy-water nexus from the lens of Sustainable Development Goals in China. Resources, Conservation and Recycling, 2022, 183, 106357.	10.8	36
89	Advancing landscape sustainability science: theoretical foundation and synergies with innovations in methodology, design, and application. Landscape Ecology, 2020, 35, 1-9.	4.2	35
90	Comparison of transpiration between different aged black locust (Robinia pseudoacacia) trees on the semi-arid Loess Plateau, China. Journal of Arid Land, 2016, 8, 604-617.	2.3	34

° Å,...

#	Article	IF	CITATIONS
91	Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Global Change Biology, 2020, 26, 4495-4505.	9.5	34
92	Soil Carbon and Nitrogen Changes following Afforestation of Marginal Cropland across a Precipitation Gradient in Loess Plateau of China. PLoS ONE, 2014, 9, e85426.	2.5	34
93	Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agricultural and Forest Meteorology, 2022, 314, 108809.	4.8	34
94	Sap flow and water use sources of shelterâ€belt trees in an arid inland river basin of Northwest China. Ecohydrology, 2015, 8, 1446-1458.	2.4	33
95	Effect of land use and topography on spatial variability of soil moisture in a gully catchment of the Loess Plateau, China. Ecohydrology, 2012, 5, 826-833.	2.4	32
96	Spatial scale effects of water erosion dynamics: Complexities, variabilities, and uncertainties. Chinese Geographical Science, 2012, 22, 127-143.	3.0	32
97	Snow cover and soil moisture controls of freeze–thaw-related soil gas fluxes from a typical semi-arid grassland soil: a laboratory experiment. Biology and Fertility of Soils, 2014, 50, 295-306.	4.3	32
98	Hydrological services by mountain ecosystems in Qilian Mountain of China: A review. Chinese Geographical Science, 2016, 26, 174-187.	3.0	32
99	Biodiversity and Ecosystem Functional Enhancement by Forest Restoration: A Metaâ€analysis in China. Land Degradation and Development, 2017, 28, 2062-2073.	3.9	32
100	River flow is critical for vegetation dynamics: Lessons from multi-scale analysis in a hyper-arid endorheic basin. Science of the Total Environment, 2017, 603-604, 290-298.	8.0	32
101	Effects of plantation age and precipitation gradient on soil carbon and nitrogen changes following afforestation in the Chinese Loess Plateau. Land Degradation and Development, 2019, 30, 2298-2310.	3.9	32
102	Effects of nitrogen fertilizer application rates on nitrate nitrogen distribution in saline soil in the Hai River Basin, China. Journal of Soils and Sediments, 2007, 7, 136-142.	3.0	31
103	Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sensing, 2021, 13, 1299.	4.0	31
104	Greater increases in China's dryland ecosystem vulnerability in drier conditions than in wetter conditions. Journal of Environmental Management, 2021, 291, 112689.	7.8	31
105	Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Scientific Reports, 2017, 7, 3643.	3.3	30
106	Integrating vegetation suitability in sustainable revegetation for the Loess Plateau, China. Science of the Total Environment, 2021, 759, 143572.	8.0	30
107	A coupled human-natural system analysis of water yield in the Yellow River basin, China. Science of the Total Environment, 2021, 762, 143141.	8.0	30
108	Pathways from payments for ecosystem services program to socioeconomic outcomes. Ecosystem Services, 2019, 39, 101005.	5.4	29

#	Article	IF	CITATIONS
109	Climate Extreme Versus Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and Precipitation. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005252.	3.0	29
110	Terrestrial biodiversity threatened by increasing global aridity velocity under high-level warming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
111	Impacts of Drought and Human Activity on Vegetation Growth in the Grain for Green Program Region, China. Chinese Geographical Science, 2018, 28, 470-481.	3.0	28
112	Finding pathways to synergistic development of Sustainable Development Goals in China. Humanities and Social Sciences Communications, 2022, 9, .	2.9	28
113	Entangling the Complexity of Protected Area Management: The Case of Wolong Biosphere Reserve, Southwestern China. Environmental Management, 2004, 33, 788-98.	2.7	27
114	Vegetation dynamic trends and the main drivers detected using the ensemble empirical mode decomposition method in East Africa. Land Degradation and Development, 2018, 29, 2542-2553.	3.9	27
115	Evenness is important in assessing progress towards sustainable development goals. National Science Review, 2021, 8, nwaa238.	9.5	27
116	Recent Global Cropland Water Consumption Constrained by Observations. Water Resources Research, 2019, 55, 3708-3738.	4.2	26
117	Effects of land-use patterns on soil carbon and nitrogen variations along revegetated hillslopes in the Chinese Loess Plateau. Science of the Total Environment, 2020, 746, 141156.	8.0	26
118	Determining critical thresholds of ecological restoration based on ecosystem service index: A case study in the Pingjiang catchment in southern China. Journal of Environmental Management, 2022, 303, 114220.	7.8	26
119	Larger Drought and Flood Hazards and Adverse Impacts on Population and Economic Productivity Under 2.0 than 1.5°C Warming. Earth's Future, 2020, 8, e2019EF001398.	6.3	25
120	Grassland gross carbon dioxide uptake based on an improved model tree ensemble approach considering human interventions: global estimation and covariation with climate. Global Change Biology, 2017, 23, 2720-2742.	9.5	24
121	Quantifying the Effects of Vegetation Restorations on the Soil Erosion Export and Nutrient Loss on the Loess Plateau. Frontiers in Plant Science, 2020, 11, 573126.	3.6	24
122	Changes of cropland evapotranspiration and its driving factors on the loess plateau of China. Science of the Total Environment, 2020, 728, 138582.	8.0	24
123	Poverty reduction, environmental protection and ecosystem services: A prospective theory for sustainable development. Chinese Geographical Science, 2014, 24, 83-92.	3.0	23
124	Ecological-hydrological processes in arid environment: Past, present and future. Journal of Chinese Geography, 2017, 27, 1577-1594.	3.9	23
125	New Developments and Perspectives in Physical Geography in China. Chinese Geographical Science, 2019, 29, 363-371.	3.0	23
126	Vulnerability assessment of the global water erosion tendency: Vegetation greening can partly offset increasing rainfall stress. Land Degradation and Development, 2019, 30, 1061-1069.	3.9	23

#	Article	IF	CITATIONS
127	Identification of climate variables dominating streamflow generation and quantification of streamflow decline in the Loess Plateau, China. Science of the Total Environment, 2020, 722, 137935.	8.0	23
128	Establishment of a comprehensive indicator system for the assessment of biodiversity and ecosystem services. Landscape Ecology, 2017, 32, 1563-1579.	4.2	22
129	Fingerprinting the sources of water-mobilized sediment threatening agricultural and water resource sustainability: Progress, challenges and prospects in China. Science China Earth Sciences, 2019, 62, 2017-2030.	5.2	22
130	The synergistic effects of afforestation and the construction of checkâ€dams on sediment trapping: Four decades of evolution on the Loess Plateau, China. Land Degradation and Development, 2019, 30, 622-635.	3.9	22
131	Fences undermine biodiversity targets. Science, 2021, 374, 269-269.	12.6	22
132	Formulating an Elasticity Approach to Quantify the Effects of Climate Variability and Ecological Restoration on Sediment Discharge Change in the Loess Plateau, China. Water Resources Research, 2019, 55, 9604-9622.	4.2	21
133	Assessing Impacts of Land Use/Land Cover Conversion on Changes in Ecosystem Services Value on the Loess Plateau, China. Sustainability, 2020, 12, 7128.	3.2	21
134	Tree ring–based minimum temperature reconstruction in the central Hengduan Mountains, China. Theoretical and Applied Climatology, 2020, 141, 359-370.	2.8	21
135	Estimation of regional evapotranspiration in alpine area and its response to land use change: A case study in Three-River Headwaters region of Qinghai-Tibet Plateau, China. Chinese Geographical Science, 2012, 22, 437-449.	3.0	20
136	Comprehensive analysis of relationship between vegetation attributes and soil erosion on hillslopes in the Loess Plateau of China. Environmental Earth Sciences, 2014, 72, 1721-1731.	2.7	20
137	Effects of grazing exclusion on soil carbon and nitrogen storage in semi-arid grassland in Inner Mongolia, China. Chinese Geographical Science, 2014, 24, 479-487.	3.0	20
138	Slower vegetation greening faced faster social development on the landscape of the Belt and Road region. Science of the Total Environment, 2019, 697, 134103.	8.0	20
139	A framework for the regional critical zone classification: the case of the Chinese Loess Plateau. National Science Review, 2019, 6, 14-18.	9.5	20
140	Integrating ecosystem service supply and demand into ecological risk assessment: a comprehensive framework and case study. Landscape Ecology, 2021, 36, 2977-2995.	4.2	20
141	The contribution of ecosystem restoration to sustainable development goals in Asian drylands: A literature review. Land Degradation and Development, 2021, 32, 4472-4483.	3.9	20
142	A multiscale soil loss evaluation index. Science Bulletin, 2006, 51, 448-456.	1.7	19
143	Linking vegetation cover patterns to hydrological responses using two process-based pattern indices at the plot scale. Science China Earth Sciences, 2013, 56, 1888-1898.	5.2	19
144	Scaling effects of landscape metrics: a comparison of two methods. Physical Geography, 2013, 34, 40-49.	1.4	19

#	Article	IF	CITATIONS
145	Spatial explicit soil moisture analysis: pattern and its stability at small catchment scale in the loess hilly region of China. Hydrological Processes, 2014, 28, 4091-4109.	2.6	19
146	Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China. Sustainability, 2017, 9, 1853.	3.2	19
147	Spatial heterogeneous response of land use and landscape functions to ecological restoration: the case of the Chinese loess hilly region. Environmental Earth Sciences, 2014, 72, 2683-2696.	2.7	18
148	Evaluating the use of fire to control shrub encroachment in global drylands: A synthesis based on ecosystem service perspective. Science of the Total Environment, 2019, 648, 285-292.	8.0	18
149	African dryland ecosystem changes controlled by soil water. Land Degradation and Development, 2019, 30, 1564-1573.	3.9	18
150	Spatio-temporal characteristics and driving forces of landscape structure changes in the middle reach of the Heihe River Basin from 1990 to 2015. Landscape Ecology, 2019, 34, 755-770.	4.2	18
151	Representation of biodiversity and ecosystem services in East Africa's protected area network. Ambio, 2020, 49, 245-257.	5.5	18
152	Responses of nighttime sap flow to atmospheric and soil dryness and its potential roles for shrubs on the Loess Plateau of China. Journal of Plant Ecology, 2018, 11, 717-729.	2.3	18
153	Spatiotemporal Variations of Sediment Discharge and Inâ€Reach Sediment Budget in the Yellow River From the Headwater to the Delta. Water Resources Research, 2021, 57, e2021WR030130.	4.2	18
154	Comparing soil CO2 emission in pine plantation and oak shrub: dynamics and correlations. Ecological Research, 2006, 21, 840-848.	1.5	17
155	Assessing adaptability of planted trees using leaf traits: A case study with Robinia pseudoacacia L. in the Loess Plateau, China. Chinese Geographical Science, 2011, 21, 290-303.	3.0	17
156	Ecosystem services modeling in contrasting landscapes. Landscape Ecology, 2015, 30, 375-379.	4.2	17
157	Expanding the bridging capability of landscape ecology. Landscape Ecology, 2008, 23, 375-376.	4.2	16
158	Changes in soil carbon stock predicted by a process-based soil carbon model (Yasso07) in the Yanhe watershed of the Loess Plateau. Landscape Ecology, 2015, 30, 399-413.	4.2	16
159	Vertical Distributions of Soil Organic Carbon and its Influencing Factors Under Different Land Use Types in the Desert Riparian Zone of Downstream Heihe River Basin, China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7741-7753.	3.3	16
160	Estimation of Global Grassland Net Ecosystem Carbon Exchange Using a Model Tree Ensemble Approach. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005034.	3.0	16
161	Dynamics of soil organic carbon stock in a typical catchment of the Loess Plateau: comparison of model simulations with measurements. Landscape Ecology, 2015, 30, 381-397.	4.2	15
162	Canopy transpiration and stand water balance between two contrasting hydrological years in three typical shrub communities on the semiarid Loess Plateau of China. Ecohydrology, 2019, 12, e2064.	2.4	15

#	Article	IF	CITATIONS
163	Effects of minimum soil disturbance practices on controlling water erosion in China's slope farmland: A metaâ€analysis. Land Degradation and Development, 2019, 30, 706-716.	3.9	15
164	Frequency analyses of peak discharge and suspended sediment concentration in the United States. Journal of Soils and Sediments, 2020, 20, 1157-1168.	3.0	15
165	A retrospective analysis on changes in sediment flux in the Mississippi River system: trends, driving forces, and implications. Journal of Soils and Sediments, 2020, 20, 1719-1729.	3.0	15
166	Improving representation of collective memory in socioâ€hydrological models and new insights into flood risk management. Journal of Flood Risk Management, 2021, 14, e12679.	3.3	15
167	The Regional Impact of Ecological Restoration in the Arid Steppe on Dust Reduction over the Metropolitan Area in Northeastern China. Environmental Science & Technology, 2020, 54, 7775-7786.	10.0	14
168	Impacts of climate and vegetation leaf area index changes on global terrestrial water storage from 2002 to 2016. Science of the Total Environment, 2020, 724, 138298.	8.0	14
169	Improved Global Maps of the Optimum Growth Temperature, Maximum Light Use Efficiency, and Gross Primary Production for Vegetation. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005651.	3.0	14
170	Corridors and networks in landscape: Structure, functions and ecological effects. Chinese Geographical Science, 2014, 24, 1-4.	3.0	13
171	Managing landscape heterogeneity in different socio-ecological contexts: contrasting cases from central Loess Plateau of China and southern Finland. Landscape Ecology, 2015, 30, 463-475.	4.2	13
172	Developing a sustainable strategy to conserve reservoir marginal landscapes. National Science Review, 2018, 5, 10-14.	9.5	13
173	Global Surface Soil Moisture Dynamics in 1979–2016 Observed from ESA CCI SM Dataset. Water (Switzerland), 2019, 11, 883.	2.7	13
174	When multi-functional landscape meets Critical Zone science: advancing multi-disciplinary research for sustainable human well-being. National Science Review, 2019, 6, 349-358.	9.5	13
175	Global Dryland Ecosystem Programme (Global-DEP): Australasian consultation report. Journal of Soils and Sediments, 2020, 20, 1807-1810.	3.0	13
176	Quantifying responses of net primary productivity to agricultural expansion in drylands. Land Degradation and Development, 2021, 32, 2050-2060.	3.9	13
177	COVID-19 reveals the systemic nature of urban health globally. Cities and Health, 2020, , 1-5.	2.6	12
178	Multilevel analysis of factors affecting participants' land reconversion willingness after the Grain for Green Program. Ambio, 2021, 50, 1394-1403.	5.5	12
179	A mathematical model of soil moisture spatial distribution on the hill slopes of the Loess Plateau. Science in China Series D: Earth Sciences, 2001, 44, 395-402.	0.9	11
180	Fledging Critical Zone Science for Environmental Sustainability. Environmental Science & amp; Technology, 2017, 51, 8209-8211.	10.0	11

#	Article	IF	CITATIONS
181	Vegetation restoration changes topsoil biophysical regulations of carbon fluxes in an eroding soil landscape. Land Degradation and Development, 2018, 29, 4061-4070.	3.9	11
182	Saturation of Global Terrestrial Carbon Sink Under a High Warming Scenario. Global Biogeochemical Cycles, 2021, 35, e2020GB006800.	4.9	11
183	Sediment transport under increasing anthropogenic stress: Regime shifts within the Yellow River, China. Ambio, 2020, 49, 2015-2025.	5.5	10
184	A Trait-Based Approach for Understanding Changes in Carbon Sequestration in Semi-Arid Grassland During Succession. Ecosystems, 2022, 25, 155-171.	3.4	10
185	Divergent trends of ecosystemâ€scale photosynthetic efficiency between arid and humid lands across the globe. Global Ecology and Biogeography, 2022, 31, 1824-1837.	5.8	10
186	Spatial variations of rain-use efficiency along a climate gradient on the Tibetan Plateau: A satellite-based analysis. International Journal of Remote Sensing, 2013, 34, 7487-7503.	2.9	9
187	Linking the soil moisture distribution pattern to dynamic processes along slope transects in the Loess Plateau, China. Environmental Monitoring and Assessment, 2015, 187, 778.	2.7	9
188	Challenges in coupling LTER with environmental assessments: An insight from potential and reality of the Chinese Ecological Research Network in servicing environment assessments. Science of the Total Environment, 2018, 633, 1302-1313.	8.0	9
189	The effects of restoration on vegetation trends: spatiotemporal variability and influencing factors. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 473-481.	0.3	9
190	Satellite-Observed Global Terrestrial Vegetation Production in Response to Water Availability. Remote Sensing, 2021, 13, 1289.	4.0	9
191	Multivariate control of root biomass in a semi-arid grassland on the Loess Plateau, China. Plant and Soil, 2014, 379, 315-324.	3.7	8
192	Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis. Scientific Reports, 2016, 6, 28435.	3.3	8
193	Soil moisture dynamics under Caragana korshinskii shrubs of different ages in Wuzhai County on the Loess Plateau, China. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 387-396.	0.3	8
194	Editorial overview: Dryland social-ecological systems in changing environments. Current Opinion in Environmental Sustainability, 2021, 48, A1-A5.	6.3	8
195	Soil carbon stock and flux in plantation forest and grassland ecosystems in Loess Plateau, China. Chinese Geographical Science, 2014, 24, 423-435.	3.0	7
196	Dissolved carbon fluxes in a vegetation restoration area of an eroding landscape. Water Research, 2019, 152, 106-116.	11.3	7
197	Response of Soil Moisture to Rainfall Event in Black Locust Plantations at Different Stages of Restoration in Hilly-gully Area of the Loess Plateau, China. Chinese Geographical Science, 2020, 30, 427-445.	3.0	7
198	Response of Ecohydrological Variables to Meteorological Drought under Climate Change. Remote Sensing, 2022, 14, 1920.	4.0	7

#	Article	IF	CITATIONS
199	Resolving the Conflicts Between Biodiversity Conservation and Socioeconomic Development in China: Fuzzy Clustering Approach. Biodiversity and Conservation, 2006, 15, 2813-2827.	2.6	6
200	Responses of CH4 and N2O fluxes to land-use conversion and fertilization in a typical red soil region of southern China. Scientific Reports, 2017, 7, 10571.	3.3	6
201	Vegetation responses and tradeâ€offs with soilâ€related ecosystem services after shrub removal: A metaâ€analysis. Land Degradation and Development, 2019, 30, 1219-1228.	3.9	6
202	Contribution of plant traits to the explanation of temporal variations in carbon and water fluxes in semiarid grassland patches. Journal of Plant Ecology, 2020, 13, 773-784.	2.3	6
203	Threshold of vapour–pressure deficit constraint on light use efficiency varied with soil water content. Ecohydrology, 2022, 15, e2305.	2.4	6
204	Short-Term Grazing Exclusion Alters Soil Bacterial Co-occurrence Patterns Rather Than Community Diversity or Composition in Temperate Grasslands. Frontiers in Microbiology, 2022, 13, 824192.	3.5	6
205	Distinct Responses of Leaf Traits to Environment and Phylogeny Between Herbaceous and Woody Angiosperm Species in China. Frontiers in Plant Science, 2021, 12, 799401.	3.6	6
206	Sustainable city development challenged by extreme weather in a warming world. Geography and Sustainability, 2022, 3, 114-118.	4.3	6
207	The vulnerability of ecosystem structure in the semi-arid area revealed by the functional trait networks. Ecological Indicators, 2022, 139, 108894.	6.3	6
208	Woody Species Diversity in Forest Plantations in a Mountainous Region of Beijing, China: Effects of Sampling Scale and Species Selection. PLoS ONE, 2014, 9, e115038.	2.5	5
209	Combined effects of rainfall regime and plot length on runoff and soil loss in the Loess Plateau of China. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 397-406.	0.3	5
210	Objective indicators contribute more than subjective beliefs to resident willingness to pay for ecosystem services on the Tibetan Plateau. Journal of Environmental Management, 2021, 285, 112048.	7.8	5
211	Enhanced coupling of light use efficiency and water use efficiency in arid and semiâ€arid environments. Ecohydrology, 2022, 15, e2391.	2.4	5
212	Effects of retired steepland afforestation on soil properties: A case study in the Loess Plateau of China. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, , 1-9.	0.6	4
213	Uncertainties of Two Methods in Selecting Priority Areas for Protecting Soil Conservation Service at Regional Scale. Sustainability, 2017, 9, 1577.	3.2	4
214	Developing China's National Emission Trading Scheme: Experiences from Existing Global Schemes and China's Pilot Programs. Chinese Geographical Science, 2018, 28, 287-295.	3.0	4
215	Topsoil carbonâ€selective transport in an eroding soil landscape with vegetation restoration. Land Degradation and Development, 2021, 32, 2061-2073.	3.9	4
216	Alternative biome states of African terrestrial vegetation and the potential drivers: A continental-scale study. Science of the Total Environment, 2021, 800, 149489.	8.0	4

#	Article	IF	CITATIONS
217	Impacts of Future Climate Change and Atmospheric CO ₂ Concentration on Ecosystem Water Retention Service. Earth's Future, 2022, 10, .	6.3	4
218	Soil moisture temporal stability analysis for typical hilly and gully re-vegetated catchment in the Loess Plateau, China. Environmental Earth Sciences, 2016, 75, 1.	2.7	3
219	Root trait variation of seed plants from China and the primary drivers. Journal of Biogeography, 2021, 48, 2402-2417.	3.0	3
220	Divergent change patterns observed in hydrological fluxes entering China's two largest lakes. Science of the Total Environment, 2022, 817, 152969.	8.0	3
221	Soil conservation on the Loess Plateau and the regional effect: impact of the â€~Grain for Green' Project. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 461-471.	0.3	2
222	Evidence of Differences in Covariation Among Root Traits Across Plant Growth Forms, Mycorrhizal Types, and Biomes. Frontiers in Plant Science, 2021, 12, 785589.	3.6	2
223	The Spatiotemporal Change of Clacier Runoff Is Comparably Attributed to Climatic Factors and Physical Properties in Northwestern China. Remote Sensing, 2022, 14, 2393.	4.0	2
224	Designing regional pattern for ecosystem restoration: A case study. Science in China Series D: Earth Sciences, 2006, 49, 86-97.	0.9	1
225	Earth surface processes and environmental sustainability in China: preface. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 373-374.	0.3	1
226	Stochastic soil moisture dynamic modelling: a case study in the Loess Plateau, China. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 437-444.	0.3	1
227	Does having more sustainable communities bring better sustainability?. Innovation(China), 2022, 3, 100267.	9.1	1
228	Structure Disentanglement and Effect Analysis of the Arid Riverscape Social-Ecological System Using a Network Approach. Sustainability, 2019, 11, 5159.	3.2	0
229	Response to concerns about the African fire trends controlled by precipitation over recent decades. Global Change Biology, 2022, 28, .	9.5	0