
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/714292/publications.pdf Version: 2024-02-01

Ιναν Μαστιν

#	Article	IF	CITATIONS
1	T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis. Stem Cells Translational Medicine, 2022, 11, 213-229.	3.3	4
2	Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates. Cartilage, 2022, 13, 194760352210759.	2.7	9
3	Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. International Journal of Molecular Sciences, 2022, 23, 2530.	4.1	12
4	Genipinâ€crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. Journal of Biomedical Materials Research - Part A, 2022, 110, 1372-1385.	4.0	5
5	Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Frontiers in Bioengineering and Biotechnology, 2022, 10, 841690.	4.1	3
6	Efficacy of bioreactorâ€activated bone substitute with bone marrow nuclear cells on fusion rate and fusion mass microarchitecture in sheep. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1862-1875.	3.4	2
7	Perfusion-Based Bioreactor Culture and Isothermal Microcalorimetry for Preclinical Drug Testing with the Carbonic Anhydrase Inhibitor SLC-0111 in Patient-Derived Neuroblastoma. International Journal of Molecular Sciences, 2022, 23, 3128.	4.1	10
8	In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. International Journal of Molecular Sciences, 2022, 23, 6900.	4.1	0
9	Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Materials Science and Engineering C, 2021, 120, 111701.	7.3	72
10	The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 2021, 27, 336-350.	3.1	3
11	Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells. Journal of Tissue Engineering, 2021, 12, 204173142110448.	5.5	9
12	From Autologous Flaps to Engineered Vascularized Grafts for Bone Regeneration. Reference Series in Biomedical Engineering, 2021, , 521-554.	0.1	0
13	Thymus Extracellular Matrixâ€Derived Scaffolds Support Graftâ€Resident Thymopoiesis and Longâ€Term In Vitro Culture of Adult Thymic Epithelial Cells. Advanced Functional Materials, 2021, 31, 2010747.	14.9	16
14	Nasal Chondrocyte–Based Engineered Grafts for the Repair of Articular Cartilage "Kissing―Lesions: A Pilot Large-Animal Study. American Journal of Sports Medicine, 2021, 49, 2187-2198.	4.2	1
15	Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy, 2021, 23, 368-372.	0.7	45
16	Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy, 2021, 23, 1060-1063.	0.7	15
17	Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation. Acta Biomaterialia, 2021, 134, 240-251.	8.3	13
18	From Single Batch to Mass Production–Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product. Frontiers in Medicine, 2021, 8, 712917.	2.6	6

#	Article	IF	CITATIONS
19	Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Science Translational Medicine, 2021, 13, eaaz4499.	12.4	22
20	Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
21	Manufacturing of Human Tissues as offâ€ŧheâ€5helf Grafts Programmed to Induce Regeneration. Advanced Materials, 2021, 33, e2103737.	21.0	27
22	Modeling In Vitro Osteoarthritis Phenotypes in a Vascularized Bone Model Based on a Bone-Marrow Derived Mesenchymal Cell Line and Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 9581.	4.1	6
23	Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination. Journal of Autoimmunity, 2021, 124, 102714.	6.5	7
24	Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Frontiers in Bioengineering and Biotechnology, 2021, 9, 826867.	4.1	5
25	Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing. Molecular and Cellular Oncology, 2021, 8, 2007030.	0.7	1
26	Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft. Frontiers in Oncology, 2021, 11, 775136.	2.8	7
27	Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation. Acta Biomaterialia, 2020, 102, 458-467.	8.3	12
28	Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts. Clinical Hemorheology and Microcirculation, 2020, 74, 67-78.	1.7	20
29	Orthotopic Bone Formation by Streamlined Engineering and Devitalization of Human Hypertrophic Cartilage. International Journal of Molecular Sciences, 2020, 21, 7233.	4.1	9
30	Plateletâ€rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1908-1917.	2.7	5
31	Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness. Bioengineering, 2020, 7, 141.	3.5	30
32	Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays. Biosensors and Bioelectronics, 2020, 166, 112467.	10.1	7
33	Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions. Cartilage, 2020, , 194760352095815.	2.7	6
34	Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model. Journal of Cell Science, 2020, 133, .	2.0	16
35	Editorial: Clinical Translation and Commercialisation of Advanced Therapy Medicinal Products. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619698.	4.1	1
36	Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential. Cytotherapy, 2020, 22, 602-605.	0.7	35

#	Article	IF	CITATIONS
37	Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGFâ€2. Advanced Healthcare Materials, 2020, 9, 1901669.	7.6	31
38	Welcome to ISCT 2020 Paris Virtual. Cytotherapy, 2020, 22, S3.	0.7	0
39	Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes. Biomolecules, 2020, 10, 932.	4.0	33
40	Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB Journal, 2020, 34, 5499-5511.	0.5	33
41	Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage. Frontiers in Bioengineering and Biotechnology, 2020, 8, 283.	4.1	16
42	Reply to comment on: Mumme M, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019.149.w20032. Swiss Medical Weekly, 2020, 150, w20240.	1.6	0
43	Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy, 2019, 21, 1019-1024.	0.7	466
44	Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing. Frontiers in Immunology, 2019, 10, 2256.	4.8	27
45	Bioreactorâ€manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies. Cell Proliferation, 2019, 52, e12653.	5.3	15
46	Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials, 2019, 223, 119468.	11.4	90
47	Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. IScience, 2019, 19, 504-513.	4.1	13
48	Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential. Stem Cells Translational Medicine, 2019, 8, 194-204.	3.3	16
49	Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nature Biomedical Engineering, 2019, 3, 545-557.	22.5	126
50	Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactorâ€Based 3D Culture System. Advanced Biology, 2019, 3, e1800300.	3.0	21
51	Nose to back: compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc. , 2019, 37, 214-232.		18
52	Challenges for mesenchymal stromal cell therapies. Science Translational Medicine, 2019, 11, .	12.4	126
53	Roadmap and Challenges for Investigator Initiated Clinical Trials With Advanced Therapy Medicinal Products (ATMPs). , 2019, , 57-57.		1
54	Regulation of Inflammatory Response in Human Osteoarthritic Chondrocytes by Novel Herbal Small Molecules. International Journal of Molecular Sciences, 2019, 20, 5745.	4.1	19

#	Article	IF	CITATIONS
55	Improved Adipocyte Viability in Autologous Fat Grafting With Ascorbic Acid–Supplemented Tumescent Solution. Annals of Plastic Surgery, 2019, 83, 464-467.	0.9	6
56	Organs by design. Current Opinion in Organ Transplantation, 2019, 24, 562-567.	1.6	7
57	Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials, 2019, 192, 118-127.	11.4	32
58	Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments. Life Science Alliance, 2019, 2, e201900304.	2.8	37
59	Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. , 2019, , .		2
60	Tissue engineering for paediatric patients. Swiss Medical Weekly, 2019, 149, w20032.	1.6	7
61	Engineering Human Bone Marrow Proxies. Cell Stem Cell, 2018, 22, 298-301.	11.1	23
62	Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4625-4630.	7.1	53
63	Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating. Blood, 2018, 131, 1425-1429.	1.4	26
64	Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomaterialia, 2018, 69, 83-94.	8.3	52
65	Delivery of cellular factors to regulate bone healing. Advanced Drug Delivery Reviews, 2018, 129, 285-294.	13.7	51
66	Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells. Cytotechnology, 2018, 70, 807-817.	1.6	1
67	Engineered humanized bone organs maintain human hematopoiesis in vivo. Experimental Hematology, 2018, 61, 45-51.e5.	0.4	17
68	Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials, 2018, 171, 219-229.	11.4	53
69	Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration. Acta Biomaterialia, 2018, 73, 154-166.	8.3	16
70	From Tissue Engineering to Regenerative Surgery. EBioMedicine, 2018, 28, 11-12.	6.1	9
71	Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e150-e158.	2.7	65
72	The survey on cellular and tissue-engineered therapies in Europe and neighboring Eurasian countries in 2014 and 2015. Cytotherapy, 2018, 20, 1-20.	0.7	12

#	Article	IF	CITATIONS
73	Labelâ€Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels. Advanced Healthcare Materials, 2018, 7, e1800534.	7.6	21
74	Notchâ€inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Reports, 2018, 19, .	4.5	43
75	Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 294-304.	3.1	10
76	Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage. Stem Cell Reports, 2018, 11, 440-453.	4.8	14
77	Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification. Acta Biomaterialia, 2018, 77, 142-154.	8.3	29
78	Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1402-1411.	2.7	9
79	In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5688-E5695.	7.1	99
80	An <i>In Vitro</i> Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis. Tissue Engineering - Part C: Methods, 2018, 24, 391-398.	2.1	9
81	Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6135-E6144.	7.1	23
82	Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1542-1552.	2.7	11
83	Engineered Extracellular Matrices as Biomaterials of Tunable Composition and Function. Advanced Functional Materials, 2017, 27, 1605486.	14.9	44
84	Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity. Tissue Engineering - Part A, 2017, 23, 708-715.	3.1	5
85	Perfusion bioreactor-based cryopreservation of 3D human mesenchymal stromal cell tissue grafts. Cryobiology, 2017, 76, 150-153.	0.7	24
86	Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine. Current Opinion in Biotechnology, 2017, 47, 1-6.	6.6	29
87	Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Scientific Reports, 2017, 7, 44398.	3.3	26
88	Bimodal morphological analyses of native and engineered tissues. Materials Science and Engineering C, 2017, 76, 543-550.	7.3	5
89	Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells. Scientific Reports, 2017, 7, 14252.	3.3	21
90	Scaffold Composition Determines the Angiogenic Outcome of Cellâ€Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution. Advanced Healthcare Materials, 2017, 6, 1700600.	7.6	12

#	Article	lF	CITATIONS
91	Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development. Stem Cell Reports, 2017, 9, 1124-1138.	4.8	27
92	Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model. Acta Biomaterialia, 2017, 63, 236-245.	8.3	22
93	Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications. RSC Advances, 2017, 7, 39628-39634.	3.6	27
94	Synthetic niche substrates engineered via two-photon laser polymerization for the expansion of human mesenchymal stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2836-2845.	2.7	32
95	Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. International Journal of Molecular Sciences, 2017, 18, 2478.	4.1	8
96	Ascorbic Acid Attenuates Senescence of Human Osteoarthritic Osteoblasts. International Journal of Molecular Sciences, 2017, 18, 2517.	4.1	19
97	Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid. Contrast Media and Molecular Imaging, 2017, 2017, 1-10.	0.8	7
98	From Autologous Flaps to Engineered Vascularized Grafts for Bone Regeneration. , 2017, , 1-34.		1
99	Biologically and mechanically driven design of an RGD-mimetic macroporous foam for adipose tissue engineering applications. Biomaterials, 2016, 104, 65-77.	11.4	36
100	Dual Role of Mesenchymal Stem Cells Allows for Microvascularized Bone Tissue‣ike Environments in PEG Hydrogels. Advanced Healthcare Materials, 2016, 5, 489-498.	7.6	51
101	A relativity concept in mesenchymal stromal cell manufacturing. Cytotherapy, 2016, 18, 613-620.	0.7	45
102	Engineering Small-Scale and Scaffold-Based Bone Organs via Endochondral Ossification Using Adult Progenitor Cells. Methods in Molecular Biology, 2016, 1416, 413-424.	0.9	5
103	Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification. Stem Cells Translational Medicine, 2016, 5, 1090-1097.	3.3	44
104	Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix. Stem Cells Translational Medicine, 2016, 5, 1684-1694.	3.3	24
105	Future of cellular therapies in orthopaedics: Different views, one common challenge. Journal of Orthopaedic Research, 2016, 34, 10-11.	2.3	0
106	Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Stem Cells Translational Medicine, 2016, 5, 1730-1738.	3.3	47
107	Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study. Stem Cells, 2016, 34, 2956-2966.	3.2	63
108	Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects. Tissue Engineering - Part A, 2016, 22, 1286-1295.	3.1	34

#	Article	IF	CITATIONS
109	Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomaterialia, 2016, 42, 127-135.	8.3	21
110	Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet, The, 2016, 388, 1985-1994.	13.7	214
111	Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype. Arthritis Research and Therapy, 2016, 18, 125.	3.5	13
112	Engineered miniaturized models of musculoskeletal diseases. Drug Discovery Today, 2016, 21, 1429-1436.	6.4	24
113	Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatric Surgery International, 2016, 32, 17-27.	1.4	63
114	Three dimensional multiâ€cellular muscleâ€like tissue engineering in perfusionâ€based bioreactors. Biotechnology and Bioengineering, 2016, 113, 226-236.	3.3	31
115	The Survey on Cellular and Engineered Tissue Therapies in Europe in 2013. Tissue Engineering - Part A, 2016, 22, 5-16.	3.1	11
116	International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18, 151-159.	0.7	400
117	Cartilage Repair in the Inflamed Joint: Considerations for Biological Augmentation Toward Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2016, 22, 149-159.	4.8	22
118	Learn, simplify and implement: developmental re-engineering strategies for cartilage repai. Swiss Medical Weekly, 2016, 146, w14346.	1.6	6
119	Boneâ€forming capacity of adult human nasal chondrocytes. Journal of Cellular and Molecular Medicine, 2015, 19, 1390-1399.	3.6	18
120	Generation and characterization of osteochondral grafts with human nasal chondrocytes. Journal of Orthopaedic Research, 2015, 33, 1111-1119.	2.3	12
121	Facile Fabrication of Egg White Macroporous Sponges for Tissue Regeneration. Advanced Healthcare Materials, 2015, 4, 2281-2290.	7.6	41
122	Effects of Intersyringe Processing on Adipose Tissue and Its Cellular Components. Plastic and Reconstructive Surgery, 2015, 135, 1618-1628.	1.4	60
123	Novel perfused compression bioreactor system as an in vitro model to investigate fracture healing. Frontiers in Bioengineering and Biotechnology, 2015, 3, 10.	4.1	25
124	Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model. International Journal of Molecular Sciences, 2015, 16, 12616-12630.	4.1	31
125	Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1394-1403.	2.7	41
126	High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes. Scientific Reports, 2015, 5, 10288.	3.3	76

#	Article	IF	CITATIONS
127	An Improved Cartilage Digestion Method for Research and Clinical Applications. Tissue Engineering - Part C: Methods, 2015, 21, 394-403.	2.1	7
128	The Survey on Cellular and Engineered Tissue Therapies in Europe in 2012. Tissue Engineering - Part A, 2015, 21, 1-13.	3.1	31
129	Bioreactor-engineered cancer tissue-like structures mimic phenotypes, gene expression profiles and drug resistance patterns observed "inÂvivo― Biomaterials, 2015, 62, 138-146.	11.4	59
130	Modular Poly(ethylene glycol) Matrices for the Controlled 3D‣ocalized Osteogenic Differentiation of Mesenchymal Stem Cells. Advanced Healthcare Materials, 2015, 4, 550-558.	7.6	34
131	Antiâ€Inflammatory/Tissue Repair Macrophages Enhance the Cartilageâ€Forming Capacity of Human Bone Marrowâ€Derived Mesenchymal Stromal Cells. Journal of Cellular Physiology, 2015, 230, 1258-1269.	4.1	34
132	Animal models for meniscus repair and regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 512-527.	2.7	53
133	Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 2097-2105.	4.2	91
134	Tissue engineering strategies to study cartilage development, degeneration and regeneration. Advanced Drug Delivery Reviews, 2015, 84, 107-122.	13.7	134
135	Engineered decellularized matrices to instruct bone regeneration processes. Bone, 2015, 70, 66-72.	2.9	55
136	A potential role of homeobox transcription factors in osteoarthritis. Annals of Translational Medicine, 2015, 3, 254.	1.7	10
137	Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion. PLoS ONE, 2014, 9, e102359.	2.5	81
138	Osteoinductivity of engineered cartilaginous templates devitalized by inducible apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17426-17431.	7.1	56
139	Bioreactors. , 2014, , 393-425.		4
140	TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms. Journal of Cell Science, 2014, 127, 1079-91.	2.0	82
141	Mesenchymal stromal cells induce epithelialâ€toâ€mesenchymal transition in human colorectal cancer cells through the expression of surfaceâ€bound TGFâ€i². International Journal of Cancer, 2014, 134, 2583-2594.	5.1	58
142	Effect of Purmorphamine on Osteogenic Differentiation of Human Mesenchymal Stem Cells in a Three-Dimensional Dynamic Culture System. Cellular and Molecular Bioengineering, 2014, 7, 575-584.	2.1	7
143	Osteoblastic Differentiation of Wharton Jelly Biopsy Specimens and Their Mesenchymal Stromal Cells after Serum-Free Culture. Plastic and Reconstructive Surgery, 2014, 134, 59e-69e.	1.4	15
144	Adult human neural crest–derived cells for articular cartilage repair. Science Translational Medicine, 2014, 6, 251ra119.	12.4	108

#	Article	IF	CITATIONS
145	Manufacturing Challenges in Regenerative Medicine. Science Translational Medicine, 2014, 6, 232fs16.	12.4	54
146	Non-Adherent Mesenchymal Progenitors from Adipose Tissue Stromal Vascular Fraction. Tissue Engineering - Part A, 2014, 20, 1081-1088.	3.1	8
147	"In vitro―3D models of tumor-immune system interaction. Advanced Drug Delivery Reviews, 2014, 79-80, 145-154.	13.7	78
148	Engineered Tissues as Customized <i>Organ Germs</i> . Tissue Engineering - Part A, 2014, 20, 1132-1133.	3.1	27
149	Re-engineering Development to Instruct Tissue Regeneration. Current Topics in Developmental Biology, 2014, 108, 319-338.	2.2	23
150	Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet, The, 2014, 384, 337-346.	13.7	163
151	Atomic force microscopy to investigate spatial patterns of response to interleukin-1beta in engineered cartilage tissue elasticity. Journal of Biomechanics, 2014, 47, 2157-2164.	2.1	15
152	Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival. Stem Cell Research, 2014, 12, 584-598.	0.7	38
153	Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials, 2014, 35, 5065-5078.	11.4	136
154	Rapid prototyped porous nickel–titanium scaffolds as bone substitutes. Journal of Tissue Engineering, 2014, 5, 204173141454067.	5.5	33
155	TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms. Development (Cambridge), 2014, 141, e707-e707.	2.5	0
156	A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 183-191.	2.7	26
157	The role of 3D structure and protein conformation on the innate andÂadaptive immune responses to silk-based biomaterials. Biomaterials, 2013, 34, 8161-8171.	11.4	88
158	Priming 3D Cultures of Human Mesenchymal Stromal Cells Toward Cartilage Formation Via Developmental Pathways. Stem Cells and Development, 2013, 22, 2849-2858.	2.1	40
159	MSCs: science and trials. Nature Medicine, 2013, 19, 812-812.	30.7	41
160	The Survey on Cellular and Engineered Tissue Therapies in Europe in 2011. Tissue Engineering - Part A, 2013, 20, 131108064828001.	3.1	39
161	Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials, 2013, 34, 5025-5035.	11.4	77
162	Tissue decellularization by activation of programmed cell death. Biomaterials, 2013, 34, 6099-6108.	11.4	64

#	Article	IF	CITATIONS
163	Scaffold-Based Delivery of a Clinically Relevant Anti-Angiogenic Drug Promotes the Formation of <i>In Vivo</i> Stable Cartilage. Tissue Engineering - Part A, 2013, 19, 1960-1971.	3.1	47
164	Engineering of a functional bone organ through endochondral ossification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3997-4002.	7.1	289
165	Toward Clinical Application of Tissue-Engineered Cartilage. Facial Plastic Surgery, 2013, 29, 099-105.	0.9	9
166	Meniscus repair and regeneration: review on current methods and research potential. , 2013, 26, 150-170.		118
167	Response of Human Engineered Cartilage Based on Articular or Nasal Chondrocytes to Interleukin-1β and Low Oxygen. Tissue Engineering - Part A, 2012, 18, 362-372.	3.1	70
168	Perspective on the Evolution of Cell-Based Bone Tissue Engineering Strategies. European Surgical Research, 2012, 49, 1-7.	1.3	38
169	Validation of an Automated Procedure to Isolate Human Adipose Tissue–Derived Cells by Using the Sepax [®] Technology. Tissue Engineering - Part C: Methods, 2012, 18, 575-582.	2.1	62
170	Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep. European Spine Journal, 2012, 21, 1740-1747.	2.2	9
171	Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: Towards annulus fibrosus tissue engineering. Acta Biomaterialia, 2012, 8, 3313-3325.	8.3	73
172	Tissue Engineering for Total Meniscal Substitution: Animal Study in Sheep Model—Results at 12 Months. Tissue Engineering - Part A, 2012, 18, 1573-1582.	3.1	99
173	Limited Acquisition of Chromosomal Aberrations in Human Adult Mesenchymal Stromal Cells. Cell Stem Cell, 2012, 10, 9-10.	11.1	87
174	Generation of Human Adult Mesenchymal Stromal/Stem Cells Expressing Defined Xenogenic Vascular Endothelial Growth Factor Levels by Optimized Transduction and Flow Cytometry Purification. Tissue Engineering - Part C: Methods, 2012, 18, 283-292.	2.1	27
175	Substrate elasticity modulates TGF beta stimulated re-differentiation of expanded human articular chondrocytes. Drug Delivery and Translational Research, 2012, 2, 351-362.	5.8	10
176	On-line monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D tissue constructs. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 696-701.	2.7	28
177	Fibroblast Growth Factor-2 Maintains a Niche-Dependent Population of Self-Renewing Highly Potent Non-adherent Mesenchymal Progenitors Through FGFR2c. Stem Cells, 2012, 30, 1455-1464.	3.2	55
178	The Survey on Cellular and Engineered Tissue Therapies in Europe in 2010. Tissue Engineering - Part A, 2012, 18, 2268-2279.	3.1	32
179	Enhancing the biological performance of synthetic polymeric materials byÂdecoration with engineered, decellularized extracellular matrix. Biomaterials, 2012, 33, 5085-5093.	11.4	112
180	Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. Journal of Cellular Physiology, 2012, 227, 88-97.	4.1	219

#	Article	IF	CITATIONS
181	Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells. , 2012, 24, 224-236.		68
182	Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2. , 2012, 24, 308-319.		54
183	Ex situ bioengineering of bioartificial endocrine glands: A new frontier in regenerative medicine of soft tissue organs. Annals of Anatomy, 2011, 193, 381-394.	1.9	22
184	Dynamic formation of oriented patches in chondrocyte cell cultures. Journal of Mathematical Biology, 2011, 63, 757-777.	1.9	3
185	Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials, 2011, 32, 321-329.	11.4	149
186	The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials, 2011, 32, 2878-2884.	11.4	141
187	Engineered Cartilage Maturation Regulates Cytokine Production and Interleukin-1β Response. Clinical Orthopaedics and Related Research, 2011, 469, 2773-2784.	1.5	32
188	In vitro platforms for tissue engineering: implications for basic research and clinical translation. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e164-e167.	2.7	47
189	Realâ€ŧime measurements of human chondrocyte heat production during in vitro proliferation. Biotechnology and Bioengineering, 2011, 108, 3019-3024.	3.3	7
190	Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue. Biomaterials, 2011, 32, 5801-5809.	11.4	92
191	Autologous Tissue-engineered Osteochondral Graft for Talus Osteochondral Lesions. Techniques in Foot and Ankle Surgery, 2011, 10, 163-168.	0.2	2
192	The Survey on Cellular and Engineered Tissue Therapies in Europe in 2009. Tissue Engineering - Part A, 2011, 17, 2221-2230.	3.1	32
193	A 3D in vitro bone organ model using human progenitor cells. , 2011, 21, 445-458.		85
194	Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on <i>in vitro</i> osteogenic cell differentiation and <i>in vivo</i> bone formation. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1461-1467.	4.0	13
195	Orderly osteochondral regeneration in a sheep model using a novel nanoâ€composite multilayered biomaterial. Journal of Orthopaedic Research, 2010, 28, 116-124.	2.3	177
196	Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair?. Osteoarthritis and Cartilage, 2010, 18, 1067-1076.	1.3	18
197	Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskeletal Disorders, 2010, 11, 220.	1.9	120
198	Effect of threeâ€dimensional expansion and cell seeding density on the cartilageâ€forming capacity of human articular chondrocytes in type II collagen sponges. Journal of Biomedical Materials Research - Part A, 2010, 95A, 924-931.	4.0	46

#	Article	IF	CITATIONS
199	Fibroblast growth factor 2 and plateletâ€derived growth factor, but not platelet lysate, induce proliferationâ€dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis and Rheumatism, 2010, 62, 3815-3825.	6.7	78
200	Adipose tissueâ€derived progenitors for engineering osteogenic and vasculogenic grafts. Journal of Cellular Physiology, 2010, 225, 348-353.	4.1	76
201	Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. Biomaterials, 2010, 31, 8946-8952.	11.4	66
202	Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials, 2010, 31, 2252-2259.	11.4	59
203	<i>In Vitro</i> and <i>In Vivo</i> Validation of Human and Goat Chondrocyte Labeling by Green Fluorescent Protein Lentivirus Transduction. Tissue Engineering - Part C: Methods, 2010, 16, 11-21.	2.1	24
204	A Survey on Cellular and Engineered Tissue Therapies in Europe in 2008. Tissue Engineering - Part A, 2010, 16, 2419-2427.	3.1	23
205	Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7251-7256.	7.1	427
206	Micro- and Nanomechanical Analysis of Articular Cartilage byÂIndentation-Type Atomic Force Microscopy: Validation withÂaÂGel-Microfiber Composite. Biophysical Journal, 2010, 98, 2731-2740.	0.5	154
207	Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages. Arthritis Research and Therapy, 2010, 12, R34.	3.5	78
208	Bioreactor Systems in Regenerative Medicine. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 95-113.	0.5	2
209	A Transient 3D-CFD Model Incorporating Biological Processes for Use in Tissue Engineering. Micro and Nanosystems, 2010, 2, 249-260.	0.6	7
210	Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. , 2010, 19, 127-135.		100
211	Ceramic materials lead to underestimated DNA quantifications: a method for reliable measurements. , 2010, 20, 38-44.		10
212	An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes. , 2010, 20, 316-328.		23
213	<i>In Vitro</i> Characterization of Immune-Related Properties of Human Fetal Bone Cells for Potential Tissue Engineering Applications. Tissue Engineering - Part A, 2009, 15, 1523-1532.	3.1	34
214	Platelet Lysate as a Serum Substitute for 2D Static and 3D Perfusion Culture of Stromal Vascular Fraction Cells from Human Adipose Tissue. Tissue Engineering - Part A, 2009, 15, 869-875.	3.1	47
215	Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair. Osteoarthritis and Cartilage, 2009, 17, 489-496.	1.3	19
216	Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends in Biotechnology, 2009, 27, 495-502.	9.3	125

#	Article	IF	CITATIONS
217	Potential and Bottlenecks of Bioreactors in 3D Cell Culture and Tissue Manufacturing. Advanced Materials, 2009, 21, 3352-3367.	21.0	72
218	Radiographic evaluation of frontal talar edge configuration for osteochondral plug transplantation. Clinical Anatomy, 2009, 22, 261-266.	2.7	13
219	A novel implantation technique for engineered osteo-chondral grafts. Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17, 1377-1383.	4.2	13
220	Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nature Nanotechnology, 2009, 4, 186-192.	31.5	391
221	The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells, 2009, 27, 210-219.	3.2	119
222	A novel bioreactor with mechanical stimulation for skeletal tissue engineering. Chemical Industry and Chemical Engineering Quarterly, 2009, 15, 41-44.	0.7	20
223	Design of graded biomimetic osteochondral composite scaffolds. Biomaterials, 2008, 29, 3539-3546.	11.4	233
224	Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis and Rheumatism, 2008, 58, 197-208.	6.7	105
225	Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: Macro-scale and micro-structured models. Journal of Biomechanics, 2008, 41, 2918-2925.	2.1	88
226	Assessment of the stability of TGFβ3 bioactivity for potential bioreactor applications. Biochemical Engineering Journal, 2008, 39, 586-589.	3.6	6
227	Spatial and temporal patterns of bone formation in ectopically preâ€fabricated, autologous cellâ€based engineered bone flaps in rabbits. Journal of Cellular and Molecular Medicine, 2008, 12, 1238-1249.	3.6	28
228	Assessment of Nerve Damage Using a Novel Ultrasonic Device for Bone Cutting. Journal of Oral and Maxillofacial Surgery, 2008, 66, 593-596.	1.2	95
229	Bioreactors for tissue engineering. , 2008, , 483-506.		3
230	Lumican inhibits collagen deposition in tissue engineered cartilage. Matrix Biology, 2008, 27, 526-534.	3.6	22
231	New dimensions in tumor immunology: what does 3D culture reveal?. Trends in Molecular Medicine, 2008, 14, 333-340.	6.7	122
232	Comparative study of desktop- and synchrotron radiation-based micro computed tomography analyzing cell-seeded scaffolds in tissue engineering of bone. , 2008, , .		4
233	Defining Properties of Neural Crest–Derived Progenitor Cells from the Apex of Human Developing Tooth. Tissue Engineering - Part A, 2008, 14, 317-330.	3.1	33
234	Weak Functional Coupling of the Melanocortin-1 Receptor Expressed in Human Adipocytes. Journal of Receptor and Signal Transduction Research, 2008, 28, 485-504.	2.5	10

#	Article	IF	CITATIONS
235	Tissue Engineering for Total Meniscal Substitution: Animal Study in Sheep Model. Tissue Engineering - Part A, 2008, 14, 1067-1080.	3.1	108
236	A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage. , 2008, 15, 1-10.		22
237	Cartilage tissue engineering using pre-aggregated human articular chondrocytes. , 2008, 16, 92-99.		58
238	Human Articular Chondrocytes Culture. Methods in Molecular Medicine, 2007, 140, 237-247.	0.8	12
239	Three-Dimensional Cell Culture and Tissue Engineering in a T-CUP (Tissue Culture Under Perfusion). Tissue Engineering, 2007, 13, 2021-2028.	4.6	72
240	Growth Factors for Clinical-Scale Expansion of Human Articular Chondrocytes: Relevance for Automated Bioreactor Systems. Tissue Engineering, 2007, 13, 1227-1234.	4.6	54
241	Use of multicellular tumor spheroids to dissect endothelial cell–tumor cell interactions: A role for Tâ€cadherin in tumor angiogenesis. FEBS Letters, 2007, 581, 4523-4528.	2.8	64
242	Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis and Rheumatism, 2007, 56, 586-595.	6.7	118
243	Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Research and Therapy, 2007, 9, 301.	3.5	150
244	Threeâ€Dimensional Perfusion Culture of Human Adipose Tissueâ€Derived Endothelial and Osteoblastic Progenitors Generates Osteogenic Constructs with Intrinsic Vascularization Capacity. Stem Cells, 2007, 25, 1823-1829.	3.2	186
245	Nanoscale Engineering of Biomaterial Surfaces. Advanced Materials, 2007, 19, 553-557.	21.0	67
246	Osteochondral tissue engineering. Journal of Biomechanics, 2007, 40, 750-765.	2.1	330
247	The osteogenicity of implanted engineered bone constructs is related to the density of clonogenic bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 60-65.	2.7	38
248	Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. British Journal of Cancer, 2007, 96, 1072-1082.	6.4	75
249	Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis and Cartilage, 2007, 15, 48-58.	1.3	89
250	Visual Histological Grading System for the Evaluation of <i>in Vitro</i> –Generated Neocartilage. Tissue Engineering, 2006, 12, 2141-2149.	4.6	189
251	Angiogenesis in Tissue Engineering: Breathing Life into Constructed Tissue Substitutes. Tissue Engineering, 2006, 12, 2093-2104.	4.6	513
252	Modulation of Chondrocyte Phenotype for Tissue Engineering by Designing the Biologicâ^'Polymer Carrier Interface. Biomacromolecules, 2006, 7, 3012-3018.	5.4	20

#	Article	IF	CITATIONS
253	Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochemical and Biophysical Research Communications, 2006, 345, 1167-1176.	2.1	85
254	Precultivation of Engineered Human Nasal Cartilage Enhances the Mechanical Properties Relevant for Use in Facial Reconstructive Surgery. Annals of Surgery, 2006, 244, 978-985.	4.2	50
255	The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials, 2006, 27, 1043-1053.	11.4	78
256	Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials, 2006, 27, 5927-5934.	11.4	49
257	Cartilage tissue engineering for degenerative joint diseaseâ~†. Advanced Drug Delivery Reviews, 2006, 58, 300-322.	13.7	206
258	21 BIOREACTORS FOR CARTILAGE TISSUE ENGINEERING. Osteoarthritis and Cartilage, 2006, 14, S10.	1.3	0
259	Engineering of osteoinductive grafts by isolation and expansion of ovine bone marrow stromal cells directly on 3D ceramic scaffolds. Biotechnology and Bioengineering, 2006, 93, 181-187.	3.3	56
260	Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. Journal of Cellular Biochemistry, 2006, 98, 1140-1149.	2.6	64
261	Human articular chondrocytes suppress in vitro proliferation of anti-CD3 activated peripheral blood mononuclear cells. Journal of Cellular Physiology, 2006, 209, 732-734.	4.1	30
262	Cartilage tissue engineering by expanded goat articular chondrocytes. Journal of Orthopaedic Research, 2006, 24, 1078-1085.	2.3	44
263	Visual Histological Grading System for the Evaluation ofin Vitro?Generated Neocartilage. Tissue Engineering, 2006, .	4.6	3
264	In Vitro Osteogenic Differentiation and In Vivo Bone-Forming Capacity of Human Isogenic Jaw Periosteal Cells and Bone Marrow Stromal Cells. Annals of Surgery, 2005, 242, 859-868.	4.2	55
265	Differentiation-Dependent Up-Regulation of BMP-2, TGF-??1, and VEGF Expression by FGF-2 in Human Bone Marrow Stromal Cells. Plastic and Reconstructive Surgery, 2005, 116, 1379-1386.	1.4	24
266	Culture of Melanoma Cells in 3-Dimensional Architectures Results in Impaired Immunorecognition by Cytotoxic T Lymphocytes Specific for Melan-A/MART-1 Tumor-Associated Antigen. Annals of Surgery, 2005, 242, 851-858.	4.2	39
267	Structural characterization and reliable biomechanical assessment of integrative cartilage repair. Journal of Biomechanics, 2005, 38, 1846-1854.	2.1	57
268	Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials, 2005, 26, 6941-6949.	11.4	254
269	Threeâ€Dimensional Perfusion Culture of Human Bone Marrow Cells and Generation of Osteoinductive Grafts. Stem Cells, 2005, 23, 1066-1072.	3.2	182
270	British Society for Matrix Biology Autumn Meeting †Joint with the UK Tissue & Cell Engineering Society, University of Bristol, UK. International Journal of Experimental Pathology, 2005, 86, A1-A56.	1.3	0

#	Article	IF	CITATIONS
271	Threeâ€dimensional culture of melanoma cells profoundly affects gene expression profile: A high density oligonucleotide array study. Journal of Cellular Physiology, 2005, 204, 522-531.	4.1	285
272	Experimental and mathematical study of the influence of growth factors on the growth kinetics of adult human articular chondrocytes. Journal of Cellular Physiology, 2005, 204, 830-838.	4.1	15
273	Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials, 2005, 26, 2479-2489.	11.4	151
274	In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials, 2005, 26, 3173-3185.	11.4	169
275	Characterization of Transcript Levels for Matrix Molecules and Proteases in Ruptured Human Anterior Cruciate Ligaments. Connective Tissue Research, 2005, 46, 53-65.	2.3	26
276	Effects of in Vitro Preculture on in Vivo Development of Human Engineered Cartilage in an Ectopic Model. Tissue Engineering, 2005, 11, 1421-1428.	4.6	70
277	Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. Journal of Bioscience and Bioengineering, 2005, 100, 489-494.	2.2	86
278	Real-Time Quantitative RT-PCR Assays. , 2004, 238, 231-238.		2
279	The role of bioreactors in tissue engineering. Trends in Biotechnology, 2004, 22, 80-86.	9.3	1,023
280	Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis and Cartilage, 2004, 12, 476-484.	1.3	336
281	FGFâ€2 enhances TGFâ€Î²1â€induced periosteal chondrogenesis. Journal of Orthopaedic Research, 2004, 22, 1114-1119.	2.3	86
282	Cell Yield, Proliferation, and Postexpansion Differentiation Capacity of Human Ear, Nasal, and Rib Chondrocytes. Tissue Engineering, 2004, 10, 762-770.	4.6	170
283	Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis and Rheumatism, 2003, 48, 1315-1325.	6.7	347
284	Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnology and Bioengineering, 2003, 84, 205-214.	3.3	394
285	Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochemical and Biophysical Research Communications, 2003, 310, 580-588.	2.1	159
286	Enzymatic Digestion of Adult Human Articular Cartilage Yields a Small Fraction of the Total Available Cells. Connective Tissue Research, 2003, 44, 173-180.	2.3	69
287	Enzymatic Digestion of Adult Human Articular Cartilage Yields a Small Fraction of the Total Available Cells. Connective Tissue Research, 2003, 44, 173-180.	2.3	30
288	Cell differentiation by mechanical stress. FASEB Journal, 2002, 16, 1-13.	0.5	561

#	Article	IF	CITATIONS
289	Advanced Bioreactor with Controlled Application of Multi-Dimensional Strain For Tissue Engineering. Journal of Biomechanical Engineering, 2002, 124, 742-749.	1.3	195
290	Recent Advances in Cartilage Tissue Engineering: From the Choice of Cell Sources to the Use of Bioreactors JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2002, 45, 851-861.	0.3	5
291	Three-Dimensional Tissue Engineering of Hyaline Cartilage: Comparison of Adult Nasal and Articular Chondrocytes. Tissue Engineering, 2002, 8, 817-826.	4.6	206
292	Erodible Conducting Polymers for Potential Biomedical Applications. Angewandte Chemie - International Edition, 2002, 41, 141-144.	13.8	162
293	Tissueâ€engineered composites for the repair of large osteochondral defects. Arthritis and Rheumatism, 2002, 46, 2524-2534.	6.7	295
294	Realâ€ŧime quantitative RTâ€PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. Journal of Cellular Biochemistry, 2002, 85, 737-746.	2.6	317
295	Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 2002, 23, 4131-4141.	11.4	791
296	Fluorescence Microscopy Imaging of Bone for Automated Histomorphometry. Tissue Engineering, 2002, 8, 847-852.	4.6	47
297	Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.1	139
298	Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. Journal of Cellular Biochemistry, 2001, 81, 368-377.	2.6	395
299	Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGFâ€2 during 2D expansion and BMPâ€2 during 3D cultivation. Journal of Cellular Biochemistry, 2001, 83, 121-128.	2.6	181
300	Integration of engineered cartilage. Journal of Orthopaedic Research, 2001, 19, 1089-1097.	2.3	214
301	Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis and Cartilage, 2001, 9, 112-118.	1.3	319
302	Selective differentiation of mammalian bone marrow stromal cells cultured on threeâ€dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.1	20
303	In vitro generation of osteochondral composites. Biomaterials, 2000, 21, 2599-2606.	11.4	246
304	Macroporous polymer foams by hydrocarbon templating. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1970-1975.	7.1	190
305	Method for Quantitative Analysis of Glycosaminoglycan Distribution in Cultured Natural and Engineered Cartilage. Annals of Biomedical Engineering, 1999, 27, 656-662.	2.5	151
306	Reconstruction of Extensive Long-Bone Defects in Sheep Using Porous Hydroxyapatite Sponges. Calcified Tissue International, 1999, 64, 83-90.	3.1	117

#	Article	IF	CITATIONS
307	Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research, 1999, 17, 130-138.	2.3	664
308	Mammalian Chondrocytes Expanded in the Presence of Fibroblast Growth Factor 2 Maintain the Ability to Differentiate and Regenerate Three-Dimensional Cartilaginous Tissue. Experimental Cell Research, 1999, 253, 681-688.	2.6	242
309	Frontiers in Tissue Engineering. Clinical Orthopaedics and Related Research, 1999, 367, S46-S58.	1.5	131
310	Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering. Biotechnology Progress, 1998, 14, 193-202.	2.6	490
311	<i>In vitro</i> differentiation of chick embryo bone marrow stromal cells into cartilaginous and boneâ€like tissues. Journal of Orthopaedic Research, 1998, 16, 181-189.	2.3	142
312	A Nude Mouse Model for Human Bone Formation in Unloaded Conditions. Bone, 1998, 22, 131S-134S.	2.9	123
313	Chondrogenesis in a Cell-Polymer-Bioreactor System. Experimental Cell Research, 1998, 240, 58-65.	2.6	423
314	Prefabricated Engineered Bone Flaps: An Experimental Model of Tissue Reconstruction in Plastic Surgery. Plastic and Reconstructive Surgery, 1998, 101, 577-581.	1.4	63
315	Fibroblast Growth Factor-2 Supports ex Vivo Expansion and Maintenance of Osteogenic Precursors from Human Bone Marrow*. Endocrinology, 1997, 138, 4456-4462.	2.8	387
316	Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13885-13890.	7.1	385