Ivo KusÃ;k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7142603/publications.pdf

Version: 2024-02-01

1478505 1281871 35 184 6 11 citations h-index g-index papers 35 35 35 115 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Self-Sensing Properties of Fly Ash Geopolymer Doped with Carbon Black under Compression. Materials, 2021, 14, 4350.	2.9	11
2	Electrical and Self-Sensing Properties of Alkali-Activated Slag Composite with Graphite Filler. Materials, 2019, 12, 1616.	2.9	28
3	Change in the Sensory Properties of Alkali Activated Slag Mortars. Procedia Structural Integrity, 2019, 23, 9-14.	0.8	0
4	Acoustic non-destructive testing of high temperature degraded concrete with comparison of acoustic impedance. MATEC Web of Conferences, 2018, 219, 03003.	0.2	3
5	Differences in Electrical Properties of Portland Cement and Alkali-Activated Slag Mortars. Solid State Phenomena, 2018, 276, 15-20.	0.3	1
6	Impact of graphite admixture on electrical properties of alkali-activated slag mortars. MATEC Web of Conferences, 2017, 107, 00035.	0.2	0
7	On the effect of addition of carbon nanotubes on the electric conductivity of alkali-activated slag mortars. IOP Conference Series: Materials Science and Engineering, 2017, 246, 012044.	0.6	3
8	Durability of FRP/wood bonds glued with epoxy resin. Materiali in Tehnologije, 2017, 51, 889-895.	0.5	2
9	Nonlinear Elastic Wave Spectroscopy with MLS Perturbation Signal. Procedia Engineering, 2016, 151, 306-312.	1.2	O
10	Monitoring of Concrete Hydration by Electrical Measurement Methods. Procedia Engineering, 2016, 151, 271-276.	1.2	3
11	Carbon Admixtures Influence on the Electrical Properties of Slag Mortars Focusing on Alternating Conductivity and Permittivity. Procedia Engineering, 2016, 151, 236-240.	1.2	5
12	Comparison of Results of Impedance Spectroscopy Methods with Results of Impact-echo Method in Investigation of High-temperature-degraded Concrete. Procedia Engineering, 2016, 151, 265-270.	1.2	1
13	Electric Conductivity Changes in Geopolymer Samples with Added Carbon Nanotubes. Procedia Engineering, 2016, 151, 157-161.	1.2	25
14	Exposure of Mortars Modified with Rubber Aggregates and Polymer Admixtures to Acid Environments and Elevated Temperature Conditions. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	7
15	Changes of Electrical Parameters of Cement Chipboards Cetris-Basic after Freezing Cycle. Advanced Materials Research, 2015, 1124, 197-202.	0.3	0
16	Low–Frequency Noise Measurements Used For Quality Assessment Of GaSb Based Laser Diodes Prepared By Molecular Beam Epitaxy. Journal of Electrical Engineering, 2015, 66, 226-230.	0.7	3
17	The Use of Simulation Models for Complex Description of Permittivity of Building Materials. Advanced Materials Research, 2015, 1124, 191-196.	0.3	0
18	Nondestructive Testing of Moist Cetris-Basic Wood-Cement Chipboards by Using Impedance Spectroscopy. Advanced Materials Research, 2015, 1124, 203-208.	0.3	1

#	Article	IF	CITATIONS
19	Influence of Water Content on Fundamental Frequency of Mortar Sample. Advanced Materials Research, 2015, 1124, 273-279.	0.3	1
20	Comparison of Impedance Spectra of Concrete Recorded with Utilizing Carbon Transition Paste. Advanced Materials Research, 2014, 897, 131-134.	0.3	13
21	Is componential strength analysis of concrete possible?. Magazine of Concrete Research, 2013, 65, 1480-1485.	2.0	16
22	Dielectric Properties of Concrete Specimens after Heat Stress. Applied Mechanics and Materials, 2013, 446-447, 1389-1394.	0.2	14
23	Tracing of Concrete Hydration by Means of Impedance Spectroscopy (New Tool for Building Elements) Tj ETQq1	1 0.78431 0.2	.4 ggBT /Ove
24	Thermal Stress of Building Materials Containing Plasticizer Characterised by Alternating Electric Field. Applied Mechanics and Materials, 0, 627, 149-152.	0.2	0
25	Application Acoustic Emission Method and Impedance Spectroscopy for Monitoring Concrete During Hardening. Advanced Materials Research, 0, 1000, 257-260.	0.3	2
26	Characterization of Thermal Stress of Building Materials Containing Rubber Granulate by Alternating Electric Field. Advanced Materials Research, 0, 1000, 207-210.	0.3	0
27	Impact-Echo Methods to Assessment Corrosion of Reinforced Concrete Structures. Applied Mechanics and Materials, 0, 627, 268-271.	0.2	3
28	Dielectric Spectral Differences for Concrete with Shredded Automobile Tires as an Admixture. Advanced Materials Research, 0, 1000, 186-189.	0.3	0
29	Non-Destructive Tracking of Structural Changes of Concrete Mixtures during Thermal Stress. Applied Mechanics and Materials, 0, 617, 152-155.	0.2	2
30	Influence of Carbon Admixtures to the Electrical Conductivity of Slag Mortars. Solid State Phenomena, 0, 258, 465-468.	0.3	2
31	Electrical Properties of Alkali-Activated Slag Mortar with Carbon Fibres. Materials Science Forum, 0, 908, 100-105.	0.3	2
32	Electrical Properties of Steel Fibre Reinforced Alkali-Activated Slag Composite. Key Engineering Materials, 0, 760, 55-60.	0.4	1
33	Enhanced Electrical Properties of Fly Ash Geopolymer Composites with Carbon Nanotubes. Solid State Phenomena, 0, 296, 137-142.	0.3	3
34	Self-Sensing Properties of Alkali-Activated Slag Composite with Carbon Black during Bending Test. Solid State Phenomena, 0, 296, 167-172.	0.3	1
35	Sensing properties of slag-based geopolymer composite with carbon fibers under compressive loading. , 0, , .		O