Nicole Calakos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7142119/publications.pdf Version: 2024-02-01

NICOLE CALAKOS

#	Article	IF	CITATIONS
1	Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature, 2007, 448, 894-900.	27.8	688
2	Specificity and regulation of a synaptic vesicle docking complex. Neuron, 1994, 13, 353-361.	8.1	580
3	Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. Journal of Clinical Investigation, 2015, 125, 782-786.	8.2	333
4	<i>Drd1a-</i> tdTomato BAC Transgenic Mice for Simultaneous Visualization of Medium Spiny Neurons in the Direct and Indirect Pathways of the Basal Ganglia. Journal of Neuroscience, 2008, 28, 2681-2685.	3.6	213
5	Generation of Silent Synapses by Acute In Vivo Expression of CaMKIV and CREB. Neuron, 2005, 45, 741-752.	8.1	202
6	Multiple Roles for the Active Zone Protein RIM1α in Late Stages of Neurotransmitter Release. Neuron, 2004, 42, 889-896.	8.1	149
7	An Improved BAC Transgenic Fluorescent Reporter Line for Sensitive and Specific Identification of Striatonigral Medium Spiny Neurons. Frontiers in Systems Neuroscience, 2011, 5, 32.	2.5	140
8	Astrocytes refine cortical connectivity at dendritic spines. ELife, 2014, 3, .	6.0	139
9	Pathway-Specific Striatal Substrates for Habitual Behavior. Neuron, 2016, 89, 472-479.	8.1	121
10	A Gαs DREADD Mouse for Selective Modulation of cAMP Production in Striatopallidal Neurons. Neuropsychopharmacology, 2013, 38, 854-862.	5.4	116
11	Presynaptic long-term plasticity. Frontiers in Synaptic Neuroscience, 2013, 5, 8.	2.5	109
12	<i>Sapap3</i> Deletion Causes mGluR5-Dependent Silencing of AMPAR Synapses. Journal of Neuroscience, 2011, 31, 16685-16691.	3.6	86
13	Circuit-Selective Striatal Synaptic Dysfunction in the Sapap3 Knockout Mouse Model of Obsessive-Compulsive Disorder. Biological Psychiatry, 2014, 75, 623-630.	1.3	85
14	Sapap3 Deletion Anomalously Activates Short-Term Endocannabinoid-Mediated Synaptic Plasticity. Journal of Neuroscience, 2011, 31, 9563-9573.	3.6	78
15	Functional evidence implicating a novel TOR1A mutation in idiopathic, late-onset focal dystonia. Journal of Medical Genetics, 2010, 47, 646-650.	3.2	68
16	Functional Genomic Analyses of Mendelian and Sporadic Disease Identify Impaired eIF2α Signaling as a Generalizable Mechanism for Dystonia. Neuron, 2016, 92, 1238-1251.	8.1	68
17	Increased Metabotropic Glutamate Receptor 5 Signaling Underlies Obsessive-Compulsive Disorder-like Behavioral and Striatal Circuit Abnormalities in Mice. Biological Psychiatry, 2016, 80, 522-533.	1.3	63
18	Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior. ELife, 2017, 6, .	6.0	57

NICOLE CALAKOS

#	Article	IF	CITATIONS
19	Parvalbumin Interneurons of the Mouse Nucleus Accumbens are Required For Amphetamine-Induced Locomotor Sensitization and Conditioned Place Preference. Neuropsychopharmacology, 2018, 43, 953-963.	5.4	56
20	MeCP2 Phosphorylation Limits Psychostimulant-Induced Behavioral and Neuronal Plasticity. Journal of Neuroscience, 2014, 34, 4519-4527.	3.6	50
21	Confocal analysis of cholinergic and dopaminergic inputs onto pyramidal cells in the prefrontal cortex of rodents. Frontiers in Neuroanatomy, 2010, 4, 21.	1.7	48
22	Munc13-1 Is Required for Presynaptic Long-Term Potentiation. Journal of Neuroscience, 2011, 31, 12053-12057.	3.6	39
23	A Multimodal Micro-Optrode Combining Field and Single Unit Recording, Multispectral Detection and Photolabeling Capabilities. PLoS ONE, 2013, 8, e57703.	2.5	28
24	Defining research priorities in dystonia. Neurology, 2020, 94, 526-537.	1.1	26
25	Cholinergic neurons constitutively engage the ISR for dopamine modulation and skill learning in mice. Science, 2021, 372, .	12.6	26
26	Recent insights into corticostriatal circuit mechanisms underlying habits. Current Opinion in Behavioral Sciences, 2018, 20, 40-46.	3.9	23
27	Spotlight on movement disorders: What optogenetics has to offer. Movement Disorders, 2015, 30, 624-631.	3.9	22
28	Acute In Vivo Genetic Rescue Demonstrates That Phosphorylation of RIM1Â Serine 413 Is Not Required for Mossy Fiber Long-Term Potentiation. Journal of Neuroscience, 2010, 30, 2542-2546.	3.6	16
29	Mouse model of rare TOR1A variant found in sporadic focal dystonia impairs domains affected in DYT1 dystonia patients and animal models. Neurobiology of Disease, 2016, 93, 137-145.	4.4	12
30	The HIV protease inhibitor, ritonavir, corrects diverse brain phenotypes across development in mouse model of DYT-TOR1A dystonia. Science Translational Medicine, 2021, 13, .	12.4	10
31	DYT-TOR1A subcellular proteomics reveals selective vulnerability of the nuclear proteome to cell stress. Neurobiology of Disease, 2021, 158, 105464.	4.4	9
32	Seq-ing the Circuit Logic of the Basal Ganglia. Trends in Neurosciences, 2017, 40, 325-327.	8.6	1
33	Dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress. Data in Brief, 2021, 39, 107609.	1.0	1
34	Dopamine Metabolism May Have Unexpected Benefits for Mitochondrial Energy Production. Movement Disorders, 2020, 35, 562-562.	3.9	0
35	Non-monotonic effects of GABAergic synaptic inputs on neuronal firing. PLoS Computational Biology, 2022, 18, e1010226.	3.2	0