
Mark Farrant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7141981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the TARP γ8-Selective Negative Allosteric Modulator JNJ-55511118 on AMPA Receptor Gating and Channel Conductance. Molecular Pharmacology, 2022, 101, 343-356.	2.3	5
2	Ca ²⁺ â€permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. Journal of Physiology, 2021, 599, 2655-2671.	2.9	38
3	Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior. Cell Reports, 2021, 35, 109249.	6.4	11
4	Homomeric GluA2(R) AMPA receptors can conduct when desensitized. Nature Communications, 2019, 10, 4312.	12.8	22
5	Synapse Type-Dependent Expression of Calcium-Permeable AMPA Receptors. Frontiers in Synaptic Neuroscience, 2018, 10, 34.	2.5	25
6	Altered Cerebellar Short-Term Plasticity but No Change in Postsynaptic AMPA-Type Glutamate Receptors in a Mouse Model of Juvenile Batten Disease. ENeuro, 2018, 5, ENEURO.0387-17.2018.	1.9	5
7	TARP γ-2 Is Required for Inflammation-Associated AMPA Receptor Plasticity within Lamina II of the Spinal Cord Dorsal Horn. Journal of Neuroscience, 2017, 37, 6007-6020.	3.6	21
8	An Essential Role for the Tetraspanin LHFPL4 in the Cell-Type-Specific Targeting and Clustering of Synaptic GABA A Receptors. Cell Reports, 2017, 21, 70-83.	6.4	85
9	Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation. Cell Reports, 2017, 20, 1123-1135.	6.4	28
10	Synapseâ€specific expression of calciumâ€permeable AMPA receptors in neocortical layer 5. Journal of Physiology, 2016, 594, 837-861.	2.9	41
11	Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function. Journal of Neuroscience, 2015, 35, 16171-16179.	3.6	59
12	GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nature Neuroscience, 2015, 18, 674-682.	14.8	167
13	Transmembrane AMPAR Regulatory Protein \hat{I}^3 -2 Is Required for the Modulation of GABA Release by Presynaptic AMPARs. Journal of Neuroscience, 2015, 35, 4203-4214.	3.6	14
14	Mapping the Interaction Sites between AMPA Receptors and TARPs Reveals a Role for the Receptor N-Terminal Domain in Channel Gating. Cell Reports, 2014, 9, 728-740.	6.4	63
15	Molecular Mechanisms Contributing to TARP Regulation of Channel Conductance and Polyamine Block of Calcium-Permeable AMPA Receptors. Journal of Neuroscience, 2014, 34, 11673-11683.	3.6	43
16	A role of TARPs in the expression and plasticity of calcium-permeable AMPARs: Evidence from cerebellar neurons and glia. Neuropharmacology, 2013, 74, 76-85.	4.1	28
17	TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs. Nature Neuroscience, 2013, 16, 1266-1274.	14.8	45
18	Setting the Time Course of Inhibitory Synaptic Currents by Mixing Multiple GABAA Receptor Subunit Isoforms. Journal of Neuroscience, 2012, 32, 5853-5867.	3.6	83

Mark Farrant

#	Article	IF	CITATIONS
19	Cornichons Modify Channel Properties of Recombinant and Glial AMPA Receptors. Journal of Neuroscience, 2012, 32, 9796-9804.	3.6	86
20	Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nature Neuroscience, 2012, 15, 853-861.	14.8	55
21	TARPâ€associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states. Journal of Physiology, 2012, 590, 5723-5738.	2.9	39
22	Bidirectional plasticity of calcium-permeable AMPA receptors in oligodendrocyte lineage cells. Nature Neuroscience, 2011, 14, 1430-1438.	14.8	104
23	Probing TARP Modulation of AMPA Receptor Conductance with Polyamine Toxins. Journal of Neuroscience, 2011, 31, 7511-7520.	3.6	58
24	Profound Desensitization by Ambient GABA Limits Activation of δ-Containing GABA _A Receptors during Spillover. Journal of Neuroscience, 2011, 31, 753-763.	3.6	87
25	AMPA Receptors—Another Twist?. Science, 2010, 327, 1463-1465.	12.6	10
26	Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5. Nature Neuroscience, 2009, 12, 277-285.	14.8	100
27	Synaptic mGluR activation drives plasticity of calcium-permeable AMPA receptors. Nature Neuroscience, 2009, 12, 593-601.	14.8	69
28	Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nature Neuroscience, 2009, 12, 1042-1049.	14.8	268
29	The cellular, molecular and ionic basis of GABAA receptor signalling. Progress in Brain Research, 2007, 160, 59-87.	1.4	318
30	Climbingâ€fibre activation of NMDA receptors in Purkinje cells of adult mice. Journal of Physiology, 2007, 585, 91-101.	2.9	74
31	From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nature Neuroscience, 2007, 10, 923-929.	14.8	108
32	Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nature Neuroscience, 2007, 10, 1260-1267.	14.8	178
33	Neurotransmitter-gated ion channels in dendrites. , 2007, , 189-224.		0
34	Differential Activation of GABAA-Receptor Subtypes. , 2007, , 87-110.		0
35	Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Current Opinion in Neurobiology, 2006, 16, 288-297.	4.2	393
36	Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nature Reviews Neuroscience, 2005, 6, 215-229.	10.2	1,840

Mark Farrant

7

#	Article	IF	CITATIONS
37	Properties of GABAA receptor-mediated transmission at newly formed Golgi-granule cell synapses in the cerebellum. Neuropharmacology, 2003, 44, 181-189.	4.1	21
38	Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δsubunit-containing GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14439-14444.	7.1	714
39	Maturation of EPSCs and Intrinsic Membrane Properties Enhances Precision at a Cerebellar Synapse. Journal of Neuroscience, 2003, 23, 6074-6085.	3.6	132
40	Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance. Nature, 2001, 409, 88-92.	27.8	530
41	NMDA receptor subunits: diversity, development and disease. Current Opinion in Neurobiology, 2001, 11, 327-335.	4.2	1,503
42	Insights into GABAA receptors receptor complexity from the study of cerebellar granule cells. Pharmaceutical Science Series, 2001, , 189-201.	0.0	1
43	Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. Journal of Physiology, 2000, 524, 147-162.	2.9	86
44	Single-Channel Properties of Synaptic and Extrasynaptic GABA _A Receptors Suggest Differential Targeting of Receptor Subtypes. Journal of Neuroscience, 1999, 19, 2960-2973.	3.6	222
45	NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacology, 1998, 37, 1369-1380.	4.1	77
46	Differences in Synaptic GABAA Receptor Number Underlie Variation in GABA Mini Amplitude. Neuron, 1997, 19, 697-709.	8.1	408
47	A Direct Comparison of the Single-Channel Properties of Synaptic and Extrasynaptic NMDA Receptors. Journal of Neuroscience, 1997, 17, 107-116.	3.6	93
48	NMDA-receptor channel diversity in the developing cerebellum. Nature, 1994, 368, 335-339.	27.8	310
49	GABA receptors, granule cells and genes. Nature, 1993, 361, 302-303.	27.8	21

50 Amino Acids: Inhibitory. , 0, , 225-250.