
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7141920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immature acute leukaemias: lessons from the haematopoietic roadmap. FEBS Journal, 2022, 289, 4355-4370.	4.7	2
2	Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans. Blood, 2022, 139, 3387-3401.	1.4	26
3	Clonal dynamics of haematopoiesis across the human lifespan. Nature, 2022, 606, 343-350.	27.8	160
4	Hyaluronic acid–GPRC5C signalling promotes dormancy in haematopoietic stem cells. Nature Cell Biology, 2022, 24, 1038-1048.	10.3	24
5	STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion. Blood, 2022, 140, 1592-1606.	1.4	15
6	A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis. Leukemia, 2021, 35, 724-736.	7.2	8
7	Transcriptional characterization of human megakaryocyte polyploidization and lineage commitment. Journal of Thrombosis and Haemostasis, 2021, 19, 1236-1249.	3.8	15
8	Somatic mutation landscapes at single-molecule resolution. Nature, 2021, 593, 405-410.	27.8	254
9	Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine, 2021, 27, 904-916.	30.7	452
10	Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures. Stem Cell Reports, 2021, 16, 1614-1628.	4.8	12
11	Blood and immune development in human fetal bone marrow and Down syndrome. Nature, 2021, 598, 327-331.	27.8	73
12	Sphingosine-1-Phosphate Receptor 3 Potentiates Inflammatory Programs in Normal and Leukemia Stem Cells to Promote Differentiation. Blood Cancer Discovery, 2021, 2, 32-53.	5.0	35
13	Hematopoietic stem and progenitor cells outside the bone marrow: where, when, and why. Experimental Hematology, 2021, 104, 9-16.	0.4	19
14	DNMT3A R882 Mutation in Human Haematopoietic Stem Cells Alters Differentiation Towards Neutrophils and Monocytes. Blood, 2021, 138, 2162-2162.	1.4	1
15	1019 – HUMAN HAEMATOPOIETIC STEM CELLS THROUGH A SINGLE CELL LENS. Experimental Hematology, 2021, 100, S23.	0.4	Ο
16	2027 – INTEGRATED SINGLE CELL ANALYSIS IDENTIFIES UNIQUE MOLECULAR AND FUNCTIONAL FEATURES OF EXTRAMEDULLARY HAEMATOPOIESIS IN HUMANS. Experimental Hematology, 2021, 100, S40-S41.	0.4	0
17	2025 – HAEMATOPOIETIC STEM CELL CLONAL DYNAMICS ACROSS THE HUMAN LIFESPAN. Experimental Hematology, 2021, 100, S39-S40.	0.4	0
18	Beyond "to divide or not to divide― Kinetics matters in hematopoietic stem cells. Experimental Hematology, 2020, 92, 1-10.e2.	0.4	7

#	Article	IF	CITATIONS
19	1015 – HUMAN HAEMATOPOIETIC STEM AND PROGENITOR CELL LANDSCAPES: LOCATION MATTERS. Experimental Hematology, 2020, 88, S21.	0.4	0
20	Blood stem cells SELect quiescence. Blood, 2020, 136, 2967-2968.	1.4	0
21	Chronic lymphocytic leukemia increases the pool of peripheral blood hematopoietic stem cells and skews differentiation. Blood Advances, 2020, 4, 6310-6314.	5.2	3
22	Sphingolipid Modulation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal. Cell Stem Cell, 2019, 25, 639-653.e7.	11.1	79
23	Decoding human fetal liver haematopoiesis. Nature, 2019, 574, 365-371.	27.8	392
24	A Transcriptomic Continuum of Differentiation Arrest in Acute Leukemia. Blood, 2019, 134, 2511-2511.	1.4	0
25	From haematopoietic stem cells to complex differentiation landscapes. Nature, 2018, 553, 418-426.	27.8	549
26	Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors. Nature Communications, 2018, 9, 4100.	12.8	62
27	Population dynamics of normal human blood inferred from somatic mutations. Nature, 2018, 561, 473-478.	27.8	427
28	Sphingosine-1-Phosphate Receptor 3 (S1PR3) Promotes Myeloid Commitment of Human Hematopoietic and Leukemic Stem Cells. Blood, 2018, 132, 1329-1329.	1.4	0
29	Sphingolipid Perturbation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal. Blood, 2018, 132, 170-170.	1.4	2
30	Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nature Cell Biology, 2017, 19, 1093-1104.	10.3	58
31	Human megakaryocytes: finding the root. Blood, 2017, 129, 3277-3279.	1.4	1
32	Molecular landscapes of human hematopoietic stem cells in health and leukemia. Annals of the New York Academy of Sciences, 2016, 1370, 5-14.	3.8	24
33	A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood, 2016, 128, e20-e31.	1.4	608
34	DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation. Cell Stem Cell, 2016, 19, 808-822.	11.1	216
35	Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science, 2016, 351, aab2116.	12.6	597
36	Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts. Leukemia, 2015, 29, 177-187.	7.2	23

#	Article	IF	CITATIONS
37	CDK6 Levels Regulate Quiescence Exit in Human Hematopoietic Stem Cells. Cell Stem Cell, 2015, 16, 302-313.	11.1	247
38	Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Oncogene, 2015, 34, 1843-1852.	5.9	40
39	The Human Blood Hierarchy Is Shaped By Distinct Progenitor Lineages Across Development. Blood, 2015, 126, 2360-2360.	1.4	0
40	Improved HSC reconstitution and protection from inflammatory stress and chemotherapy in mice lacking granzyme B. Journal of Experimental Medicine, 2014, 211, 769-779.	8.5	20
41	The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature, 2014, 510, 268-272.	27.8	292
42	Intercellular network structure and regulatory motifs in the human hematopoietic system. Molecular Systems Biology, 2014, 10, 741.	7.2	57
43	Reduced Lymphoid Lineage Priming Promotes Human Hematopoietic Stem Cell Expansion. Cell Stem Cell, 2014, 14, 94-106.	11.1	63
44	The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nature Immunology, 2013, 14, 756-763.	14.5	188
45	A KRAB/KAP1-miRNA Cascade Regulates Erythropoiesis Through Stage-Specific Control of Mitophagy. Science, 2013, 340, 350-353.	12.6	95
46	Molecular and functional characterization of early human hematopoiesis. Annals of the New York Academy of Sciences, 2012, 1266, 68-71.	3.8	16
47	Hematopoiesis: A Human Perspective. Cell Stem Cell, 2012, 10, 120-136.	11.1	679
48	The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 2012, 481, 157-163.	27.8	1,430
49	Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment. Science, 2011, 333, 218-221.	12.6	717
50	Enhanced c-Met activity promotes G-CSF–induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood, 2011, 117, 419-428.	1.4	114
51	Lineage- and stage-restricted lentiviral vectors for the gene therapy of chronic granulomatous disease. Gene Therapy, 2011, 18, 1087-1097.	4.5	45
52	Molecular and Functional Characterization of Early Lineage Commitment of Human Hematopoietic Stem Cells. Blood, 2011, 118, 907-907.	1.4	1
53	Discovery of Novel Recurrent Mutations in Childhood Early T-Cell Precursor Acute Lymphoblastic Leukemia by Whole Genome Sequencing - a Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 68-68.	1.4	0
54	c-Myc controls the development of CD8αα TCRαβ intestinal intraepithelial lymphocytes from thymic precursors by regulating IL-15–dependent survival. Blood, 2010, 115, 4431-4438.	1.4	27

#	Article	IF	CITATIONS
55	Inducible Gene and shRNA Expression in Resident Hematopoietic Stem Cells In Vivo Â. Stem Cells, 2010, 28, 1390-1398.	3.2	29
56	Estimating Dormant and Active Hematopoietic Stem Cell Kinetics through Extensive Modeling of Bromodeoxyuridine Label-Retaining Cell Dynamics. PLoS ONE, 2009, 4, e6972.	2.5	71
5 7	Regulation of Episomal Gene Expression by KRAB/KAP1-Mediated Histone Modifications. Journal of Virology, 2009, 83, 5574-5580.	3.4	25
58	Dynamic Regulation of Notch 1 and Notch 2 Surface Expression during T Cell Development and Activation Revealed by Novel Monoclonal Antibodies. Journal of Immunology, 2009, 183, 7212-7222.	0.8	58
59	Myc's other life: stem cells and beyond. Current Opinion in Cell Biology, 2009, 21, 844-854.	5.4	89
60	Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair. Cell, 2009, 138, 209.	28.9	2
61	Balancing dormant and self-renewing hematopoietic stem cells. Current Opinion in Genetics and Development, 2009, 19, 461-468.	3.3	176
62	Hematopoietic Stem Cell Function and Survival Depend on c-Myc and N-Myc Activity. Cell Stem Cell, 2008, 3, 611-624.	11.1	253
63	Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair. Cell, 2008, 135, 1118-1129.	28.9	1,627
64	Dormant and Selfâ€Renewing Hematopoietic Stem Cells and Their Niches. Annals of the New York Academy of Sciences, 2007, 1106, 64-75.	3.8	202
65	The human protein Hugl-1 substitutes for Drosophila Lethal giant larvae tumour suppressor function in vivo. Oncogene, 2004, 23, 8688-8694	5.9	112