Bernard Lerer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7140329/publications.pdf

Version: 2024-02-01

34 papers 3,303 citations

394421 19 h-index 414414 32 g-index

35 all docs

35 docs citations

35 times ranked 4470 citing authors

#	Article	IF	CITATIONS
1	The benefit of diagnostic whole genome sequencing in schizophrenia and other psychotic disorders. Molecular Psychiatry, 2022, 27, 1435-1447.	7.9	12
2	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
3	DIO3, the thyroid hormone inactivating enzyme, promotes tumorigenesis and metabolic reprogramming in high grade serous ovarian cancer. Cancer Letters, 2021, 501, 224-233.	7.2	10
4	Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data. Translational Psychiatry, 2021, 11, 381.	4.8	30
5	Targeting the DIO3 enzyme using first-in-class inhibitors effectively suppresses tumor growth: a new paradigm in ovarian cancer treatment. Oncogene, 2021, 40, 6248-6257.	5.9	7
6	White matter lesions, cerebral inflammation and cognitive function in a mouse model of cerebral hypoperfusion. Brain Research, 2019, 1711, 193-201.	2.2	28
7	New insights into tardive dyskinesia genetics: Implementation of whole-exome sequencing approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109659.	4.8	9
8	One year double blind study of high vs low frequency subcallosal cingulate stimulation for depression. Journal of Psychiatric Research, 2018, 96, 124-134.	3.1	39
9	Investigation of the HSPG2 Gene in Tardive Dyskinesia – New Data and Meta-Analysis. Frontiers in Pharmacology, 2018, 9, 974.	3.5	17
10	Effect of chronic unpredictable stress on mice with developmental under-expression of the Ahi1 gene: behavioral manifestations and neurobiological correlates. Translational Psychiatry, 2018, 8, 124.	4.8	14
11	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
12	Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation. Frontiers in Aging Neuroscience, 2017, 9, 191.	3.4	32
13	Adapting a stand-alone computerized cognitive test battery for online use – A case-study in the context of users with special needs. Computers in Human Behavior, 2016, 63, 757-768.	8.5	2
14	Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women. JAMA Psychiatry, 2016, 73, 497.	11.0	51
15	Effectiveness of Aerobic Exercise as an Augmentation Therapy for Inpatients with Major Depressive Disorder: A Preliminary Randomized Controlled Trial. Israel Journal of Psychiatry, 2015, 52, 65-70.	0.2	2
16	Effectiveness of Aerobic Exercise as an Augmentation Therapy for Inpatients with Major Depressive Disorder: A Preliminary Randomized Controlled Trial. Israel Journal of Psychiatry, 2015, 52, 65-70.	0.2	0
17	Oxytocin and vasopressin genes are significantly associated with schizophrenia in a large Arab-Israeli pedigree. International Journal of Neuropsychopharmacology, 2012, 15, 309-319.	2.1	46
18	Association of the ZFPM2 gene with antipsychotic-induced parkinsonism in schizophrenia patients. Psychopharmacology, 2012, 220, 519-528.	3.1	20

#	Article	IF	CITATIONS
19	A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 2010, 19, 1379-1386.	2.9	51
20	Lymphoblast and brain expression of AHI1 and the novel primate-specific gene, C6orf217, in schizophrenia and bipolar disorder. Schizophrenia Research, 2010, 120, 159-166.	2.0	16
21	AHI1, a pivotal neurodevelopmental gene, and C6orf217 are associated with susceptibility to schizophrenia. European Journal of Human Genetics, 2006, 14, 1111-1119.	2.8	68
22	Pharmacogenetics of antipsychotic therapy: pivotal research issues and the prospects for clinical implementation. Dialogues in Clinical Neuroscience, 2006, 8, 85-94.	3.7	25
23	Pharmacogenetics of Tardive Dyskinesia Combined Analysis of 780 Patients Supports Association with Dopamine D3 Receptor Gene Ser9Gly Polymorphism. Neuropsychopharmacology, 2002, 27, 105-119.	5.4	217
24	Positive association of dopamine D2 receptor polymorphism with bipolar affective disorder in a European multicenter association study of affective disorders. American Journal of Medical Genetics Part A, 2002, 114, 177-185.	2.4	50
25	A follow-up linkage study supports evidence for a bipolar affective disorder locus on chromosome 21q22. American Journal of Medical Genetics Part A, 2001, 105, 189-194.	2.4	43
26	Association analysis of NOTCH4 loci in schizophrenia using family and population-based controls. Nature Genetics, 2001, 28, 126-128.	21.4	62
27	5-HT1A Receptor Function in Normal Subjects on Clinical Doses of Fluoxetine Blunted Temperature and Hormone Responses to Ipsapirone Challenge. Neuropsychopharmacology, 1999, 20, 628-639.	5.4	79
28	Further evidence for a susceptibility locus on chromosome 10p14-p11 in 72 families with schizophrenia by nonparametric linkage analysis. American Journal of Medical Genetics Part A, 1998, 81, 302-307.	2.4	111
29	Further evidence for a susceptibility locus on chromosome 10p14–p11 in 72 families with schizophrenia by nonparametric linkage analysis. American Journal of Medical Genetics Part A, 1998, 81, 302-307.	2.4	3
30	Correspondence regarding German psychiatric genetics and Ernst $R\tilde{A}^{1}\!\!/\!\!4$ din. American Journal of Medical Genetics Part A, 1997, 74, 459-460.	2.4	7
31	Interrelationship of Age, Depression, and Central Serotonergic Function: Evidence From Fenfluramine Challenge Studies. International Psychogeriatrics, 1996, 8, 83-102.	1.0	35
32	Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study. , 1996, 67, 580-594.		166
33	Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib–pair linkage analysis. Nature Genetics, 1995, 11, 325-327.	21.4	277
34	Bipolar disorder and linkage to Xq28. Nature Genetics, 1994, 7, 461-461.	21.4	7