
## Pascal-Jean Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7140231/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pairing AIS data and underwater topography to assess maritime traffic pressures on cetaceans: Case study in the Guadeloupean waters of the Agoa sanctuary. Marine Policy, 2022, 143, 105160.                                             | 3.2 | 2         |
| 2  | Sargassum contamination and consequences for downstream uses: a review. Journal of Applied Phycology, 2021, 33, 567-602.                                                                                                                 | 2.8 | 38        |
| 3  | Singular physiological behavior of the scleractinian coral Porites astreoides in the dark phase. Coral Reefs, 2021, 40, 139-150.                                                                                                         | 2.2 | 3         |
| 4  | Kakila database: Towards a FAIR community approved database of cetacean presence in the waters of the Guadeloupe Archipelago, based on citizen science. Biodiversity Data Journal, 2021, 9, e69022.                                      | 0.8 | 3         |
| 5  | Sargassum Differentially Shapes the Microbiota Composition and Diversity at Coastal Tide Sites and<br>Inland Storage Sites on Caribbean Islands. Frontiers in Microbiology, 2021, 12, 701155.                                            | 3.5 | 13        |
| 6  | Physical properties of epilithic river biofilm as a new lead to perform pollution bioassessments in overseas territories. Scientific Reports, 2020, 10, 17309.                                                                           | 3.3 | 4         |
| 7  | Analysis of interdomain taxonomic patterns in urban street mats. Environmental Microbiology, 2020, 22, 1280-1293.                                                                                                                        | 3.8 | 4         |
| 8  | Analysis of diatoms by holotomography. Surfaces and Interfaces, 2019, 17, 100358.                                                                                                                                                        | 3.0 | 2         |
| 9  | Three-dimensional structural evolution of the cuttlefish Sepia officinalis shell from embryo to adult<br>stages. Journal of the Royal Society Interface, 2019, 16, 20190175.                                                             | 3.4 | 3         |
| 10 | Annual Phytoplankton Primary Production Estimation in a Temperate Estuary by Coupling PAM and Carbon Incorporation Methods. Estuaries and Coasts, 2018, 41, 1337-1355.                                                                   | 2.2 | 13        |
| 11 | Adhesive gland transcriptomics uncovers a diversity of genes involved in glue formation in marine tube-building polychaetes. Acta Biomaterialia, 2018, 72, 316-328.                                                                      | 8.3 | 21        |
| 12 | Aquatic urban ecology at the scale of a capital: community structure and interactions in street gutters. ISME Journal, 2018, 12, 253-266.                                                                                                | 9.8 | 11        |
| 13 | Optical Properties of Nanostructured Silica Structures From Marine Organisms. Frontiers in Marine Science, 2018, 5, .                                                                                                                    | 2.5 | 15        |
| 14 | Physiological adjustments and transcriptome reprogramming are involved in the acclimation to salinity gradients in diatoms. Environmental Microbiology, 2017, 19, 909-925.                                                               | 3.8 | 29        |
| 15 | First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone. Journal of Proteomics, 2017, 150, 63-73.                                                                                                   | 2.4 | 25        |
| 16 | Eye Development in Sepia officinalis Embryo: What the Uncommon Gene Expression Profiles Tell Us<br>about Eye Evolution. Frontiers in Physiology, 2017, 8, 613.                                                                           | 2.8 | 12        |
| 17 | Genome structure and metabolic features in the red seaweed <i>Chondrus crispus</i> shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5247-5252. | 7.1 | 307       |
| 18 | Multiparametric Analyses Reveal the pH-Dependence of Silicon Biomineralization in Diatoms. PLoS ONE, 2012. 7. e46722.                                                                                                                    | 2.5 | 68        |

PASCAL-JEAN LOPEZ

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pelagic larval duration of two diadromous species of Kuhliidae (Teleostei: Percoidei) from<br>Indo-Pacific insular systems. Marine and Freshwater Research, 2012, 63, 397.                                    | 1.3  | 11        |
| 20 | The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.                                                                                                            | 1.1  | 18        |
| 21 | Diatoms: Self assembled silicananostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst, The, 2011, 136, 42-53.                                                                | 3.5  | 114       |
| 22 | The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.                                                                                           | 27.8 | 774       |
| 23 | Digital expression profiling of novel diatom transcripts provides insight into their biological functions. Genome Biology, 2010, 11, R85.                                                                     | 9.6  | 97        |
| 24 | Rheological studies of diatom encapsulation in silica gel. Journal of Sol-Gel Science and Technology, 2009, 50, 164-169.                                                                                      | 2.4  | 10        |
| 25 | Plasticity and robustness of pattern formation in the model diatom <i>Phaeodactylum tricornutum</i> . New Phytologist, 2009, 182, 429-442.                                                                    | 7.3  | 64        |
| 26 | Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the<br>Multilevel Regulation of Silicic Acid Transporters. PLoS ONE, 2009, 4, e7458.                             | 2.5  | 101       |
| 27 | Biomimetic dual templating of silica by polysaccharide/protein assemblies. Colloids and Surfaces B:<br>Biointerfaces, 2008, 65, 140-145.                                                                      | 5.0  | 28        |
| 28 | The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.                                                                                                      | 27.8 | 1,458     |
| 29 | New tools for labeling silica in living diatoms. New Phytologist, 2008, 177, 822-829.                                                                                                                         | 7.3  | 75        |
| 30 | T7 RNA Polymerase Studied by Force Measurements Varying Cofactor Concentration. Biophysical<br>Journal, 2008, 95, 2423-2433.                                                                                  | 0.5  | 49        |
| 31 | Whole-cell response of the pennate diatom <i>Phaeodactylum tricornutum</i> to iron starvation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105,<br>10438-10443. | 7.1  | 414       |
| 32 | Diatoms in space: testing prospects for reliable diatom nanotechnology in microgravity. , 2007, , .                                                                                                           |      | 1         |
| 33 | Influence of poly-I-lysine on the biomimetic growth of silica tubes in confined media. Journal of<br>Colloid and Interface Science, 2007, 309, 44-48.                                                         | 9.4  | 19        |
| 34 | Sol–gel encapsulation extends diatom viability and reveals their silica dissolution capability.<br>Chemical Communications, 2006, , 4611-4613.                                                                | 4.1  | 33        |
| 35 | Biomimetic Growth of Silica Tubes in Confined Media. Langmuir, 2006, 22, 9092-9095.                                                                                                                           | 3.5  | 24        |
| 36 | Prospects in diatom research. Current Opinion in Biotechnology, 2005, 16, 180-186.                                                                                                                            | 6.6  | 154       |

PASCAL-JEAN LOPEZ

| #  | Article                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mimicking Biogenic Silica Nanostructures Formation. Current Nanoscience, 2005, 1, 73-83.                                                                                                                                                                                                                                | 1.2  | 116       |
| 38 | Diatomics: Toward Diatom Functional Genomics. Journal of Nanoscience and Nanotechnology, 2005, 5, 5-14.                                                                                                                                                                                                                 | 0.9  | 17        |
| 39 | Unravelling the Mechanism of RNA-Polymerase Forward Motion by Using Mechanical Force. Physical Review Letters, 2005, 94, 128102.                                                                                                                                                                                        | 7.8  | 60        |
| 40 | A mutation in T7 RNA polymerase that facilitates promoter clearance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5958-5963.                                                                                                                                             | 7.1  | 109       |
| 41 | From biogenic to biomimetic silica. Comptes Rendus - Palevol, 2004, 3, 443-452.                                                                                                                                                                                                                                         | 0.2  | 25        |
| 42 | Biogenic Silica Patterning: Simple Chemistry or Subtle Biology?. ChemInform, 2003, 34, no.                                                                                                                                                                                                                              | 0.0  | 0         |
| 43 | Biogenic Silica Patterning: Simple Chemistry or Subtle Biology?. ChemBioChem, 2003, 4, 251-259.                                                                                                                                                                                                                         | 2.6  | 150       |
| 44 | Silicon — a Central Metabolite for Diatom Growth and Morphogenesis. Progress in Molecular and Subcellular Biology, 2003, 33, 99-124.                                                                                                                                                                                    | 1.6  | 28        |
| 45 | Uncoupling yeast intron recognition from transcription with recursive splicing. EMBO Reports, 2000, 1, 334-339.                                                                                                                                                                                                         | 4.5  | 18        |
| 46 | YIDB: the Yeast Intron DataBase. Nucleic Acids Research, 2000, 28, 85-86.                                                                                                                                                                                                                                               | 14.5 | 45        |
| 47 | Genomic-scale quantitative analysis of yeast pre-mRNA splicing: Implications for splice-site recognition. Rna, 1999, 5, 1135-1137.                                                                                                                                                                                      | 3.5  | 62        |
| 48 | The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Molecular Microbiology, 1999, 33, 188-199.                                                                                                                          | 2.5  | 222       |
| 49 | On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor 1 1Edited by R. Ebright.<br>Journal of Molecular Biology, 1998, 276, 861-875.                                                                                                                                                                | 4.2  | 28        |
| 50 | NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs<br>through passive sliding and reveal that divergent promoters have distinct NTP concentration<br>requirements for productive initiation 1 1Edited by R. Ebright. Journal of Molecular Biology, 1998, 281,<br>777-792. | 4.2  | 46        |
| 51 | Translation inhibitors stabilize Escherichia coli mRNAs independently of ribosome protection.<br>Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6067-6072.                                                                                                                  | 7.1  | 56        |
| 52 | The low processivity of T7 RNA polymerase over the initially transcribed sequence can limit productive initiation in vivo. Journal of Molecular Biology, 1997, 269, 41-51.                                                                                                                                              | 4.2  | 30        |
| 53 | The lacZ mRNA can be stabilised by the T7 late mRNA leader in E coli. Biochimie, 1996, 78, 408-415.                                                                                                                                                                                                                     | 2.6  | 11        |
| 54 | The use of a tRNA as a transcriptional reporter: the T7 late promoter is extremely efficient<br>inEscherichia colibut its transcripts are poorly expressed. Nucleic Acids Research, 1994, 22, 1186-1193.                                                                                                                | 14.5 | 51        |