
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7139089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolic antioxidants. Critical Reviews in Food Science and Nutrition, 1992, 32, 67-103.	10.3	1,834
2	Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 2015, 18, 820-897.	3.4	1,828
3	Food applications of chitin and chitosans. Trends in Food Science and Technology, 1999, 10, 37-51.	15.1	1,455
4	Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1523-1542.	2.8	1,002
5	Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 2007, 102, 1317-1327.	8.2	764
6	Measurement of antioxidant activity. Journal of Functional Foods, 2015, 18, 757-781.	3.4	742
7	Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology, 2018, 9, 345-381.	9.9	706
8	Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition, 1993, 33, 501-547.	10.3	700
9	Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 2010, 39, 4067.	38.1	669
10	Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 2005, 93, 47-56.	8.2	603
11	Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 1995, 53, 285-293.	8.2	550
12	Extraction and analysis of phenolics in food. Journal of Chromatography A, 2004, 1054, 95-111.	3.7	494
13	Chitosan as an Edible Invisible Film for Quality Preservation of Herring and Atlantic Cod. Journal of Agricultural and Food Chemistry, 2002, 50, 5167-5178.	5.2	449
14	Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes) Tj ETQq0 0 Chemistry, 1991, 39, 1527-1532.	0 rgBT /O 5.2	verlock 10 Tf 417
15	Content of Insoluble Bound Phenolics in Millets and Their Contribution to Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 2010, 58, 6706-6714.	5.2	395
16	Antioxidant Activity of Commercial Soft and Hard Wheat (Triticum aestivumL.) as Affected by Gastric pH Conditions. Journal of Agricultural and Food Chemistry, 2005, 53, 2433-2440.	5.2	391
17	Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods?. Food Chemistry, 2018, 264, 471-475.	8.2	379
18	Insoluble-Bound Phenolics in Food. Molecules, 2016, 21, 1216.	3.8	345

#	Article	IF	CITATIONS
19	Importance of Insoluble-Bound Phenolics to Antioxidant Properties of Wheat. Journal of Agricultural and Food Chemistry, 2006, 54, 1256-1264.	5.2	343
20	Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology, 2010, 112, 930-940.	1.5	332
21	Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry, 2007, 103, 1385-1394.	8.2	312
22	Carotenoid Pigments in Seafoods and Aquaculture. Critical Reviews in Food Science and Nutrition, 1998, 38, 1-67.	10.3	307
23	Bioactive Peptides. Journal of AOAC INTERNATIONAL, 2008, 91, 914-931.	1.5	306
24	Nutraceuticals and functional foods: Whole versus processed foods. Trends in Food Science and Technology, 2009, 20, 376-387.	15.1	302
25	Antioxidant Phytochemicals in Hazelnut Kernel (Corylus avellanaL.) and Hazelnut Byproducts. Journal of Agricultural and Food Chemistry, 2007, 55, 1212-1220.	5.2	297
26	Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Critical Reviews in Food Science and Nutrition, 1986, 24, 141-243.	1.3	293
27	Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. Journal of Functional Foods, 2011, 3, 144-158.	3.4	282
28	Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. International Journal of Molecular Sciences, 2018, 19, 1573.	4.1	277
29	Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 2008, 109, 144-148.	8.2	273
30	Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. International Journal of Molecular Sciences, 2016, 17, 1745.	4.1	266
31	Measuring Antioxidant Effectiveness in Food. Journal of Agricultural and Food Chemistry, 2005, 53, 4303-4310.	5.2	260
32	Revisiting the Polar Paradox Theory: A Critical Overview. Journal of Agricultural and Food Chemistry, 2011, 59, 3499-3504.	5.2	256
33	Chitin, Chitosan, and Co-Products: Chemistry, Production, Applications, and Health Effects. Advances in Food and Nutrition Research, 2005, 49, 93-135.	3.0	255
34	Antioxidant Polyphenols in Almond and Its Coproducts. Journal of Agricultural and Food Chemistry, 2006, 54, 312-318.	5.2	250
35	Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 2011, 124, 1354-1362.	8.2	243
36	Antioxidant and pro-oxidant activity of green tea extracts in marine oils. Food Chemistry, 1998, 63, 335-342.	8.2	241

#	Article	IF	CITATIONS
37	Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends in Food Science and Technology, 2001, 12, 435-464.	15.1	240
38	Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 2012, 4, 226-237.	3.4	232
39	Omega-3 fatty acid concentrates: nutritional aspects and production technologies. Trends in Food Science and Technology, 1998, 9, 230-240.	15.1	231
40	Angiotensin I Converting Enzyme Inhibitory Peptides Purified from Bovine Skin Gelatin Hydrolysate. Journal of Agricultural and Food Chemistry, 2001, 49, 2992-2997.	5.2	231
41	Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods, 2013, 5, 570-581.	3.4	225
42	Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chemistry, 2006, 99, 478-483.	8.2	223
43	Evening Primrose Meal:  A Source of Natural Antioxidants and Scavenger of Hydrogen Peroxide and Oxygen-Derived Free Radicals. Journal of Agricultural and Food Chemistry, 1999, 47, 1801-1812.	5.2	220
44	Antioxidant Activity of Fresh and Processed Jalapeño and Serrano Peppers. Journal of Agricultural and Food Chemistry, 2011, 59, 163-173.	5.2	203
45	Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochemistry Reviews, 2010, 9, 147-170.	6.5	202
46	Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chemistry, 2000, 70, 17-26.	8.2	198
47	PREPARATION OF CHITIN AND CHITOSAN OLIGOMERS AND THEIR APPLICATIONS IN PHYSIOLOGICAL FUNCTIONAL FOODS. Food Reviews International, 2000, 16, 159-176.	8.4	197
48	Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. Journal of Functional Foods, 2016, 21, 113-132.	3.4	196
49	Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. Journal of Agricultural and Food Chemistry, 2016, 64, 6584-6604.	5.2	194
50	Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago) Tj ETQq0 C) 0 rgBT /0	verlock 10 Tf !
51	Lipophilized Epigallocatechin Gallate (EGCG) Derivatives as Novel Antioxidants. Journal of Agricultural and Food Chemistry, 2011, 59, 6526-6533.	5.2	190
52	Effect of Roasting on Phenolic Content and Antioxidant Activities of Whole Cashew Nuts, Kernels, and Testa. Journal of Agricultural and Food Chemistry, 2011, 59, 5006-5014.	5.2	187
53	The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chemistry, 1989, 31, 159-164.	8.2	185
54	Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring	8.2	185

ıg 8.2 54 (Clupea harengus). Food Chemistry, 2002, 79, 69-77.

#	Article	IF	CITATIONS
55	Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). Journal of Functional Foods, 2010, 2, 196-209.	3.4	185
56	Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal of Functional Foods, 2013, 5, 590-600.	3.4	184
57	Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chemistry, 2012, 134, 742-748.	8.2	177
58	Antioxidant properties of commercial soft and hard winter wheats (Triticum aestivum L.) and their milling fractions. Journal of the Science of Food and Agriculture, 2006, 86, 477-485.	3.5	172
59	ANTIOXIDATIVE ACTIVITY OF PROTEIN HYDROLYSATE FROM ROUND SCAD MUSCLE USING ALCALASE AND FLAVOURZYME. Journal of Food Biochemistry, 2007, 31, 266-287.	2.9	168
60	Emerging Role of Phenolic Compounds as Natural Food Additives in Fish and Fish Products. Critical Reviews in Food Science and Nutrition, 2013, 53, 162-179.	10.3	161
61	Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: optimization of reaction conditions. Food Chemistry, 1999, 65, 41-49.	8.2	159
62	Superfruits: Phytochemicals, antioxidant efficacies, and health effects – A comprehensive review. Critical Reviews in Food Science and Nutrition, 2019, 59, 1580-1604.	10.3	159
63	Antioxidative and Antiproliferative Properties of Selected Barley (Hordeum vulgarae L.) Cultivars and Their Potential for Inhibition of Low-Density Lipoprotein (LDL) Cholesterol Oxidation. Journal of Agricultural and Food Chemistry, 2007, 55, 5018-5024.	5.2	157
64	Compositional Characteristics and Antioxidant Properties of Fresh and Processed Sea Cucumber (Cucumaria frondosa). Journal of Agricultural and Food Chemistry, 2007, 55, 1188-1192.	5.2	156
65	Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. Journal of Functional Foods, 2015, 18, 1125-1137.	3.4	155
66	Antioxidant Properties of Pearled Barley Fractions. Journal of Agricultural and Food Chemistry, 2006, 54, 3283-3289.	5.2	154
67	Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chemistry, 2007, 101, 1151-1157.	8.2	152
68	Effect of processing on oxidative stability and lipid classes of sesame oil. Food Research International, 2000, 33, 331-340.	6.2	151
69	Components and nutritional quality of shrimp processing by-products. Food Chemistry, 2003, 82, 235-242.	8.2	151
70	Inhibitory Activities of Soluble and Bound Millet Seed Phenolics on Free Radicals and Reactive Oxygen Species. Journal of Agricultural and Food Chemistry, 2011, 59, 428-436.	5.2	150
71	Antioxidant potential of barley as affected by alkaline hydrolysis and release of insoluble-bound phenolics. Food Chemistry, 2009, 117, 615-620.	8.2	149
72	Effect of processing on the antioxidant activity of millet grains. Food Chemistry, 2012, 133, 1-9.	8.2	149

#	Article	IF	CITATIONS
73	Antioxidant and Antiradical Activities in Extracts of Hazelnut Kernel (Corylus avellanaL.) and Hazelnut Green Leafy Cover. Journal of Agricultural and Food Chemistry, 2006, 54, 4826-4832.	5.2	148
74	Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chemistry, 2007, 104, 989-996.	8.2	148
75	Isolation and Identification of an Antioxidative Component in Canola Meal. Journal of Agricultural and Food Chemistry, 1994, 42, 1285-1290.	5.2	147
76	Antioxidative phenolic constituents of skins of onion varieties and their activities. Journal of Functional Foods, 2013, 5, 1191-1203.	3.4	147
77	Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. Journal of Functional Foods, 2011, 3, 159-170.	3.4	143
78	Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits – A comprehensive review. Journal of Functional Foods, 2016, 26, 88-122.	3.4	142
79	Comparison of Natural and Roasted Turkish Tombul Hazelnut (Corylus avellanaL.) Volatiles and Flavor by DHA/GC/MS and Descriptive Sensory Analysis. Journal of Agricultural and Food Chemistry, 2003, 51, 5067-5072.	5.2	140
80	An overview of the phenolics of canola and rapeseed: Chemical, sensory and nutritional significance. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 917-924.	1.9	138
81	LIPID CLASS COMPOSITIONS, TOCOPHEROLS AND STEROLS OF TREE NUT OILS EXTRACTED WITH DIFFERENT SOLVENTS. Journal of Food Lipids, 2008, 15, 81-96.	1.0	136
82	Phenolic Compounds and Antioxidant Activity of Kernels and Shells of Mexican Pecan (Carya) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 382 136
83	Oxidative Stability of Tree Nut Oils. Journal of Agricultural and Food Chemistry, 2008, 56, 4751-4759.	5.2	135
84	Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chemistry, 2016, 197, 221-232.	8.2	135
85	Antioxidant Activity of Hazelnut Skin Phenolics. Journal of Agricultural and Food Chemistry, 2009, 57, 4645-4650.	5.2	133
86	Bioactivities and Antiradical Properties of Millet Grains and Hulls. Journal of Agricultural and Food Chemistry, 2011, 59, 9563-9571.	5.2	133
87	Omega-3 (n-3) Fatty Acids in Health and Disease: Part 1—Cardiovascular Disease and Cancer. Journal of Medicinal Food, 2004, 7, 387-401.	1.5	132
88	Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chemistry, 2017, 237, 538-544.	8.2	132
89	Antioxidant Activity of Green Tea and Its Catechins in a Fish Meat Model System. Journal of Agricultural and Food Chemistry, 1997, 45, 4262-4266.	5.2	131
90	Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Food Chemistry, 2016, 212, 395-402.	8.2	129

#	Article	IF	CITATIONS
91	Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. Journal of Functional Foods, 2012, 4, 87-93.	3.4	128
92	Isolation and characterization of collagen from the cartilages of brownbanded bamboo shark (Chiloscyllium punctatum) and blacktip shark (Carcharhinus limbatus). LWT - Food Science and Technology, 2010, 43, 792-800.	5.2	127
93	Turkish Tombul Hazelnut (Corylus avellanaL.). 2. Lipid Characteristics and Oxidative Stability. Journal of Agricultural and Food Chemistry, 2003, 51, 3797-3805.	5.2	123
94	ANTIOXIDANT ACTIVITY OF ALMOND SEED EXTRACT AND ITS FRACTIONS. Journal of Food Lipids, 2005, 12, 344-358.	1.0	121
95	Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. Journal of Functional Foods, 2015, 18, 1022-1038.	3.4	121
96	Herbal beverages: Bioactive compounds and their role in disease risk reduction - A review. Journal of Traditional and Complementary Medicine, 2018, 8, 451-458.	2.7	121
97	Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chemistry, 2012, 131, 22-30.	8.2	117
98	Inhibition of oxidation of omega-3 polyunsaturated fatty acids and fish oil by quercetin glycosides. Food Chemistry, 2009, 117, 290-295.	8.2	116
99	Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 4, .	2.4	114
100	Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: Antioxidant activity and its potential in model systems. Food Chemistry, 2012, 135, 1118-1126.	8.2	112
101	Canola extract as an alternative natural antioxidant for canola oil. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 817-822.	1.9	108
102	Antiradical activity of extracts of almond and its by-products. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 903-908.	1.9	106
103	Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chemistry, 2018, 261, 267-273.	8.2	106
104	Lipase-catalyzed incorporation of docosahexaenoic acid (DHA) into borage oil: optimization using response surface methodology. Food Chemistry, 2002, 77, 115-123.	8.2	105
105	Low Molecular Weight Phenolics of Grape Juice and Winemaking Byproducts: Antioxidant Activities and Inhibition of Oxidation of Human Low-Density Lipoprotein Cholesterol and DNA Strand Breakage. Journal of Agricultural and Food Chemistry, 2014, 62, 12159-12171.	5.2	102
106	Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. Journal of Functional Foods, 2017, 34, 7-17.	3.4	100
107	Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. Journal of Functional Foods, 2017, 35, 622-634.	3.4	99
108	Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme. International Journal of Food Science and Technology, 2008, 43, 1019-1026.	2.7	97

#	Article	IF	CITATIONS
109	Optimization of the Extraction of Antioxidative Constituents of Six Barley Cultivars and Their Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2006, 54, 8048-8057.	5.2	96
110	Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. Journal of Functional Foods, 2015, 12, 129-143.	3.4	94
111	Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties. Journal of Functional Foods, 2013, 5, 930-939.	3.4	91
112	Novel functional food ingredients from marine sources. Current Opinion in Food Science, 2015, 2, 123-129.	8.0	91
113	A rapid chromatographic method for separation of individual catechins from green tea. Food Research International, 1996, 29, 71-76.	6.2	90
114	Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chemistry, 2017, 221, 1883-1894.	8.2	90
115	ANTIOXIDANT ACTIVITIES OF ENZYMATIC EXTRACTS FROM AN EDIBLE SEAWEED SARGASSUM HORNERI USING ESR SPECTROMETRY. Journal of Food Lipids, 2004, 11, 15-27.	1.0	89
116	Lipaseâ€assisted concentration of nâ€3 polyunsaturated fatty acids in acylglycerols from marine oils. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 945-951.	1.9	88
117	Antioxidant Properties of Wheat As Affected by Pearling. Journal of Agricultural and Food Chemistry, 2006, 54, 6177-6184.	5.2	85
118	Comparison of standard and NMR methodologies for assessment of oxidative stability of canola and soybean oils. Food Chemistry, 1995, 52, 249-253.	8.2	84
119	POTENTIAL ANTIOXIDANT ACTIVITY OF MARINE RED ALGA GRATELOUPIA FILICINA EXTRACTS. Journal of Food Lipids, 2003, 10, 251-265.	1.0	83
120	The antioxidant potential of milling fractions from breadwheat and durum. Journal of Cereal Science, 2007, 45, 238-247.	3.7	83
121	Concentration of ω-3 polyunsaturated fatty acids of marine oils using Candida cylindracea lipase: Optimization of reaction conditions. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1767-1774.	1.9	80
122	Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation. Food Chemistry, 2013, 140, 189-196.	8.2	80
123	Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chemistry, 2009, 113, 919-925.	8.2	79
124	Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. International Journal of Molecular Sciences, 2019, 20, 2644.	4.1	79
125	EVALUATION OF MALONALDEHYDE AS A MARKER OF OXIDATIVE RANCIDITY IN MEAT PRODUCTS. Journal of Food Biochemistry, 1991, 15, 97-105.	2.9	78
126	Antioxidant activity of protein hydrolyzates from aquatic species. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1197-1199.	1.9	78

#	Article	IF	CITATIONS
127	Preservation of aquatic food using edible films and coatings containing essential oils: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 66-105.	10.3	78
128	Natural antioxidants from low-pungency mustard flour. Food Research International, 1994, 27, 489-493.	6.2	76
129	Enzymatic incorporation of docosahexaenoic acid into borage oil. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1009-1015.	1.9	76
130	Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants, 2022, 11, 133.	5.1	76
131	ANTIOXIDANT ACTIVITY OF COMMON BEANS (PHASEOLUS VULGARIS L.). Journal of Food Lipids, 2004, 11, 220-233.	1.0	75
132	Omega-3 Fatty Acids in Health and Disease: Part 2—Health Effects of Omega-3 Fatty Acids in Autoimmune Diseases, Mental Health, and Gene Expression. Journal of Medicinal Food, 2005, 8, 133-148.	1.5	75
133	Oxidative stability of flax and hemp oils. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 855-861.	1.9	75
134	Phenolic profiles and antioxidant activity of defatted camelina and sophia seeds. Food Chemistry, 2018, 240, 917-925.	8.2	75
135	Identification and Quantification of Low Molecular Weight Phenolic Antioxidants in Seeds of Evening Primrose (Oenothera biennisL.). Journal of Agricultural and Food Chemistry, 2002, 50, 1267-1271.	5.2	74
136	Antioxidant activity of almonds and their by-products in food model systems. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 223.	1.9	73
137	Comparative Quality Assessment of Cultured and Wild Sea Bream (Sparus aurata) Stored in Ice. Journal of Agricultural and Food Chemistry, 2002, 50, 2039-2045.	5.2	72
138	ANTIOXIDANT ROLE OF CHITOSAN IN A COOKED COD (GADUS MORHUA) MODEL SYSTEM. Journal of Food Lipids, 2002, 9, 57-64.	1.0	71
139	Hazelnut-enriched diet improves cardiovascular risk biomarkers beyond a lipid-lowering effect in hypercholesterolemic subjects. Journal of Clinical Lipidology, 2013, 7, 123-131.	1.5	71
140	Phenolic compounds in agri-food by-products, their bioavailability and health effects. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 5, .	2.4	71
141	Phenolics of Selected Cranberry Genotypes (<i>Vaccinium macrocarpon</i> Ait.) and Their Antioxidant Efficacy. Journal of Agricultural and Food Chemistry, 2016, 64, 9342-9351.	5.2	70
142	Northern Sea Cucumber (Cucumaria frondosa): A Potential Candidate for Functional Food, Nutraceutical, and Pharmaceutical Sector. Marine Drugs, 2020, 18, 274.	4.6	67
143	POSITIONAL DISTRIBUTION OF FATTY ACIDS IN TRIACYLGLYCEROLS OF SEAL BLUBBER OIL. Journal of Food Lipids, 1997, 4, 51-64.	1.0	66
144	Unraveling the chemical identity of meat pigments. Critical Reviews in Food Science and Nutrition, 1997, 37, 561-589.	10.3	64

#	Article	IF	CITATIONS
145	Antioxidative potential of cashew phenolics in food and biological model systems as affected by roasting. Food Chemistry, 2011, 129, 1388-1396.	8.2	63
146	ANTIOXIDANT ACTIVITY OF ETHANOLIC EXTRACTS OF FLAXSEED IN A ?-CAROTENE-LINOLEATE MODEL SYSTEM. Journal of Food Lipids, 1993, 1, 111-117.	1.0	62
147	Natural antioxidants in tree nuts. European Journal of Lipid Science and Technology, 2009, 111, 1056-1062.	1.5	62
148	Bioactive peptides. Journal of AOAC INTERNATIONAL, 2008, 91, 914-31.	1.5	62
149	ANTIOXIDANT ACTIVITY OF GREEN TEA CATECHINS IN A ?-CAROTENE-LINOLEATE MODEL SYSTEM. Journal of Food Lipids, 1995, 2, 47-56.	1.0	60
150	Antioxidant factors in plant foods and selected oilseeds. BioFactors, 2000, 13, 179-185.	5.4	60
151	Phenolic acids in defatted seeds of borage (Borago officinalis L.). Food Chemistry, 2001, 75, 49-56.	8.2	60
152	The effect of an artificial diet on the biochemical composition of the gonads of the sea urchin (Strongylocentrotus droebachiensis). Food Chemistry, 2002, 79, 461-472.	8.2	60
153	Antioxidant Potential of Pea Beans (Phaseolus vulgaris L.). Journal of Food Science, 2005, 70, S85-S90.	3.1	59
154	Chemoenzymatic Synthesis of Phytosteryl Ferulates and Evaluation of Their Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2011, 59, 12375-12383.	5.2	59
155	Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-I®B using phenolic compounds from grape by-products. Food Chemistry, 2019, 290, 229-238.	8.2	59
156	Antioxidant Behavior in Bulk Oil: Limitations of Polar Paradox Theory. Journal of Agricultural and Food Chemistry, 2012, 60, 4-6.	5.2	58
157	Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils. Journal of Functional Foods, 2017, 38, 716-722.	3.4	58
158	Hexanal as an Indicator of the Flavor Deterioration of Meat and Meat Products. ACS Symposium Series, 1994, , 256-279.	0.5	57
159	Date seed flour and hydrolysates affect physicochemical properties of muffin. Food Bioscience, 2015, 12, 54-60.	4.4	56
160	Camu-camu seed (Myrciaria dubia) – From side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chemistry, 2020, 310, 125909.	8.2	56
161	Proteolytic hydrolysis of muscle proteins of harp seal (Phoca groenlandica). Journal of Agricultural and Food Chemistry, 1994, 42, 2634-2638.	5.2	55
162	Isolation and properties of acid- and pepsin-soluble collagen from the skin of blacktip shark (Carcharhinus limbatus). European Food Research and Technology, 2010, 230, 475-483.	3.3	55

#	Article	IF	CITATIONS
163	Lipophilization of Resveratrol and Effects on Antioxidant Activities. Journal of Agricultural and Food Chemistry, 2017, 65, 8617-8625.	5.2	54
164	Oxidative stability of oil from blubber of harp seal (Phoca groenlandica) as assessed by NMR and standard procedures. Food Research International, 1994, 27, 555-562.	6.2	53
165	ANTIOXIDANT EFFICACY OF EXTRACTS OF AN EDIBLE RED ALGA (GRATELOUPIA FILICINA) IN LINOLEIC ACID AND FISH OIL. Journal of Food Lipids, 2003, 10, 313-327.	1.0	53
166	A novel chemoenzymatic synthesis of phytosteryl caffeates and assessment of their antioxidant activity. Food Chemistry, 2012, 133, 1427-1434.	8.2	53
167	Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. International Journal of Molecular Sciences, 2018, 19, 3498.	4.1	52
168	Characterization of acid- and pepsin-soluble collagens from flatfish skin. Food Science and Biotechnology, 2010, 19, 27-33.	2.6	51
169	Fortification of Cookies with Peanut Skins: Effects on the Composition, Polyphenols, Antioxidant Properties, and Sensory Quality. Journal of Agricultural and Food Chemistry, 2014, 62, 11228-11235.	5.2	51
170	Preparation and antioxidant activity of tyrosol and hydroxytyrosol esters. Journal of Functional Foods, 2017, 37, 66-73.	3.4	51
171	Sea Cucumber Derived Type I Collagen: A Comprehensive Review. Marine Drugs, 2020, 18, 471.	4.6	51
172	Utilization of marine by-products for the recovery of value-added products. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 6, .	2.4	51
173	Color and Oxidative Stability of Nitrite-Free Cured Meat after Gamma Irradiation. Journal of Food Science, 1991, 56, 1450-1452.	3.1	50
174	CONCENTRATION OF DOCOSAHEXAENOIC ACID (DHA) FROM ALGAL OIL VIA UREA COMPLEXATION. Journal of Food Lipids, 2000, 7, 51-61.	1.0	50
175	Effects of natural and synthetic antioxidants on the oxidative stability of borage and evening primrose triacylglycerols. Food Chemistry, 2001, 75, 431-437.	8.2	49
176	Hydrolysis and oxidation of lipids in mussel Mytilus edulis during cold storage. Food Chemistry, 2019, 272, 109-116.	8.2	49
177	Critical Re-Evaluation of DPPH assay: Presence of Pigments Affects the Results. Journal of Agricultural and Food Chemistry, 2019, 67, 7526-7529.	5.2	48
178	Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. Food Chemistry, 2020, 315, 126202.	8.2	48
179	Enzyme-catalyzed synthesis of structured lipids via acidolysis of seal (Phoca groenlandica) blubber oil with capric acid. Food Research International, 2002, 35, 745-752.	6.2	47
180	Characterization of glycerophospholipid molecular species in six species of edible clams by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chemistry, 2017, 219, 419-427.	8.2	47

#	Article	IF	CITATIONS
181	Novel Synthesis of Cooked Cured-Meat Pigment. Journal of Food Science, 1991, 56, 1205-1208.	3.1	46
182	Iron (II) chelation activity of extracts of borage and evening primrose meals. Food Research International, 2002, 35, 65-71.	6.2	46
183	Compositional characteristics of muscle and visceral oil from steelhead trout and their oxidative stability. Food Chemistry, 2007, 104, 602-608.	8.2	46
184	Antioxidant Phenolics of Millet Control Lipid Peroxidation in Human LDL Cholesterol and Food Systems. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 275-285.	1.9	46
185	Critical Evaluation of Changes in the Ratio of Insoluble Bound to Soluble Phenolics on Antioxidant Activity of Lentils during Germination. Journal of Agricultural and Food Chemistry, 2015, 63, 379-381.	5.2	46
186	Preparation of Quercetin Esters and Their Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2019, 67, 10653-10659.	5.2	46
187	STORAGE STABILITY OF MICROENCAPSULATED SEAL BLUBBER OIL. Journal of Food Lipids, 1995, 2, 73-86.	1.0	45
188	OXIDATIVE STABILITY OF FRESH AND HEAT-PROCESSED DARK AND LIGHT MUSCLES OF MACKEREL (Scomber) Tj	ETQq0 0	0 rgBT /Overl
189	Effects of natural phenolics on shelf life and lipid stability of freeze-dried scallop adductor muscle. Food Chemistry, 2019, 295, 423-431.	8.2	45
190	Sapindaceae (Dimocarpus longan and Nephelium lappaceum) seed and peel by-products: Potential sources for phenolic compounds and use as functional ingredients in food and health applications. Journal of Functional Foods, 2020, 67, 103846.	3.4	45
191	Protein Dispersions and Hydrolysates from Shark (Isurus oxyrinchus). Journal of Aquatic Food Product Technology, 1996, 5, 43-59.	1.4	44
192	Oxidative stability of stripped and nonstripped borage and evening primrose oils and their emulsions in water. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 963-969.	1.9	44
193	Antiglycation activity of lipophilized epigallocatechin gallate (EGCG) derivatives. Food Chemistry, 2016, 190, 1022-1026.	8.2	44
194	From byproduct to a functional ingredient: Camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. Journal of Dairy Science, 2020, 103, 1131-1140.	3.4	44
195	APPLICATION OF NMR SPECTROSCOPY TO ASSESS OXIDATIVE STABILITY OF CANOLA AND SOYBEAN OILS. Journal of Food Lipids, 1993, 1, 15-24.	1.0	43
196	Acidolysis Reactions Lead to Esterification of Endogenous Tocopherols and Compromised Oxidative Stability of Modified Oils. Journal of Agricultural and Food Chemistry, 2006, 54, 7319-7323.	5.2	43
197	Protective effects of epigallocatechin gallate (EGCG) derivatives on azoxymethane-induced colonic carcinogenesis in mice. Journal of Functional Foods, 2012, 4, 323-330.	3.4	43

¹⁹⁸Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters. Food Chemistry,
2018, 245, 1262-1268.8.243

#	Article	IF	CITATIONS
199	Freshness Quality of Harp Seal (Phoca groenlandica) Meat. Journal of Agricultural and Food Chemistry, 1994, 42, 868-872.	5.2	42
200	ANTIOXIDANT ACTIVITY OF PHENOLIC EXTRACTS OF EVENING PRIMROSE (OENOTHERA BIENNIS): A PRELIMINARY STUDY. Journal of Food Lipids, 1997, 4, 75-86.	1.0	42
201	Enzyme-Assisted Acidolysis of Borage (BoragoofficinalisL.) and Evening Primrose (OenotherabiennisL.) Oils:Â Incorporation of Omega-3 Polyunsaturated Fatty Acids. Journal of Agricultural and Food Chemistry, 1999, 47, 3105-3112.	5.2	42
202	Characteristics of Salt-Fermented Sauces from Shrimp Processing Byproducts. Journal of Agricultural and Food Chemistry, 2003, 51, 784-792.	5.2	42
203	Enzymatic incorporation of capric acid into a single cell oil rich in docosahexaenoic acid and docosapentaenoic acid and oxidative stability of the resultant structured lipid. Food Chemistry, 2005, 91, 583-591.	8.2	42
204	Effect of Extraction Temperature on Functional Properties and Antioxidative Activities of Gelatin from Shark Skin. Food and Bioprocess Technology, 2012, 5, 2646-2654.	4.7	42
205	Structural and biochemical changes in dermis of sea cucumber (Stichopus japonicus) during autolysis in response to cutting the body wall. Food Chemistry, 2018, 240, 1254-1261.	8.2	42
206	Characterization of lipids in three species of sea urchin. Food Chemistry, 2018, 241, 97-103.	8.2	42
207	Oxidative Stability of Cashew Oils from Raw and Roasted Nuts. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1197-1202.	1.9	41
208	Identification of glycerophospholipid molecular species of mussel (Mytilus edulis) lipids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chemistry, 2016, 213, 344-351.	8.2	41
209	Effects of temperature and heating time on the formation of aldehydes during the frying process of clam assessed by an HPLC-MS/MS method. Food Chemistry, 2020, 308, 125650.	8.2	41
210	Clitoria ternatea L. petal bioactive compounds display antioxidant, antihemolytic and antihypertensive effects, inhibit α-amylase and α-glucosidase activities and reduce human LDL cholesterol and DNA induced oxidation. Food Research International, 2020, 128, 108763.	6.2	41
211	Partial characterization of natural antioxidants in canola meal. Food Research International, 1995, 28, 525-530.	6.2	40
212	Phenolic antioxidants in beans and their effects on inhibition of radical-induced DNA damage. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 691-696.	1.9	40
213	Synthesis of Structured Lipids via Acidolysis of Docosahexaenoic Acid Single Cell Oil (DHASCO) with Capric Acid. Journal of Agricultural and Food Chemistry, 2004, 52, 2900-2906.	5.2	40
214	Antioxidant Potential of Date (<i>Phoenix dactylifera</i> L.) Seed Protein Hydrolysates and Carnosine in Food and Biological Systems. Journal of Agricultural and Food Chemistry, 2015, 63, 864-871.	5.2	40
215	Polyphenol composition and antioxidant potential of mint leaves. Food Production Processing and Nutrition, 2019, 1, .	3.5	40
216	Effects of roasting temperature and time on aldehyde formation derived from lipid oxidation in scallop (Patinopecten yessoensis) and the deterrent effect by antioxidants of bamboo leaves. Food Chemistry, 2022, 369, 130936.	8.2	40

#	Article	IF	CITATIONS
217	Protective effect of fresh and processed Jalapeño and Serrano peppers against food lipid and human LDL cholesterol oxidation. Food Chemistry, 2012, 133, 827-834.	8.2	39
218	Phytosteryl sinapates and vanillates: Chemoenzymatic synthesis and antioxidant capacity assessment. Food Chemistry, 2013, 138, 1438-1447.	8.2	39
219	Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus). Food Chemistry, 2017, 232, 10-18.	8.2	39
220	Cannabis and Cannabis Edibles: A Review. Journal of Agricultural and Food Chemistry, 2021, 69, 1751-1774.	5.2	39
221	Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Radical Biology and Medicine, 2021, 176, 312-321.	2.9	39
222	The Chemistry, Processing, and Health Benefits of Highly Unsaturated Fatty Acids: An Overview. ACS Symposium Series, 2001, , 2-11.	0.5	38
223	Trapping Effects of Green and Black Tea Extracts on Peroxidation-Derived Carbonyl Substances of Seal Blubber Oil. Journal of Agricultural and Food Chemistry, 2009, 57, 1065-1069.	5.2	38
224	Phenolics from purple grape juice increase serum antioxidant status and improve lipid profile and blood pressure in healthy adults under intense physical training. Journal of Functional Foods, 2017, 33, 419-424.	3.4	38
225	Structured Lipids via Lipase-Catalyzed Incorporation of Eicosapentaenoic Acid into Borage (Borago) Tj ETQq1 1 0. Chemistry, 2002, 50, 477-483.	784314 rg 5.2	gBT /Overloc 37
226	Synthesis of Structured Lipids Containing Medium-Chain and Omega-3 Fatty Acids. Journal of Agricultural and Food Chemistry, 2006, 54, 4390-4396.	5.2	36
227	Effects of Oxidized Dietary Oil and Vitamin E Supplementation on Lipid Profile and Oxidation of Muscle and Liver of Juvenile Atlantic Cod (Gadus morhua). Journal of Agricultural and Food Chemistry, 2007, 55, 6379-6386.	5.2	36
228	Omega-3 fatty acids and marine oils in cardiovascular and general health: A critical overview of controversies and realities. Journal of Functional Foods, 2015, 19, 797-800.	3.4	36
229	Flavor of Cooked Meats. ACS Symposium Series, 1989, , 188-201.	0.5	35
230	Enzymatic esterification of Î,-3 fatty acid concentrates from seal blubber oil with glycerol. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1133-1136.	1.9	35
231	Epigallocatechin (EGC) esters as potential sources of antioxidants. Food Chemistry, 2020, 309, 125609.	8.2	35
232	Chemical composition of shells from red (Strongylocentrotus franciscanus) and green (Strongylocentrotus droebachiensis) sea urchin. Food Chemistry, 2012, 133, 822-826.	8.2	34
233	Enzymatic synthesis of phytosteryl docosahexaneates and evaluation of their anti-atherogenic effects in apo-E deficient mice. Food Chemistry, 2012, 134, 2097-2104.	8.2	34
234	Endogenous formation of trans fatty acids: Health implications and potential dietary intervention. Journal of Functional Foods, 2016, 25, 14-24.	3.4	34

#	Article	IF	CITATIONS
235	Action of trypsin on structural changes of collagen fibres from sea cucumber (Stichopus japonicus). Food Chemistry, 2018, 256, 113-118.	8.2	34
236	Phenolic Profile of Peanut Byâ€products: Antioxidant Potential and Inhibition of Alphaâ€Glucosidase and Lipase Activities. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 959-971.	1.9	33
237	Antioxidant activity and functional properties of Alcalase-hydrolyzed scallop protein hydrolysate and its role in the inhibition of cytotoxicity in vitro. Food Chemistry, 2021, 344, 128566.	8.2	33
238	Acidolysis of <i>p</i> -Coumaric Acid with Omega-3 Oils and Antioxidant Activity of Phenolipid Products in in vitro and Biological Model Systems. Journal of Agricultural and Food Chemistry, 2014, 62, 454-461.	5.2	32
239	Response surface optimization of phenolic compounds from jabuticaba (Myrciaria cauliflora [Mart.]) Tj ETQq1 1 assessments. Food and Chemical Toxicology, 2020, 142, 111439.	0.784314 3.6	rgBT /Overlo 32
240	RAPID OXIDATION OF COMMERCIAL EXTRA VIRGIN OLIVE OIL STORED UNDER FLUORESCENT LIGHT. Journal of Food Lipids, 1999, 6, 331-339.	1.0	31
241	Lipid components of borage (Borago officinalis L.) seeds and their changes during germination. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 55-61.	1.9	31
242	ANTIOXIDANT ACTIVITY OF PHENOLIC FRACTIONS OF RAPESEED. Journal of Food Lipids, 2003, 10, 51-62.	1.0	31
243	Inhibition of angiotensin converting enzyme, human LDL cholesterol and DNA oxidation by hydrolysates from blacktip shark gelatin. LWT - Food Science and Technology, 2013, 51, 177-182.	5.2	31
244	Mechanism of antioxidant action of natural phenolics on scallop (Argopecten irradians) adductor muscle during drying process. Food Chemistry, 2019, 281, 251-260.	8.2	31
245	Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Critical Reviews in Food Science and Nutrition, 2022, 62, 6421-6445.	10.3	31
246	Oxidative Stability of Algal Oils As Affected by Their Minor Components. Journal of Agricultural and Food Chemistry, 2006, 54, 8253-8260.	5.2	30
247	Incorporation of selected long-chain fatty acids into trilinolein and trilinolenin. Food Chemistry, 2008, 106, 33-39.	8.2	30
248	Stability of resveratrol esters with caprylic acid during simulated in vitro gastrointestinal digestion. Food Chemistry, 2019, 276, 675-679.	8.2	30
249	Effect of in vitro digestion on phenolics and antioxidant activity of red and yellow colored pea hulls. Food Chemistry, 2021, 337, 127606.	8.2	30
250	TOCOPHEROLS AND PHOSPHOLIPIDS ENHANCE THE OXIDATIVE STABILITY OF BORAGE AND EVENING PRIMROSE TRIACYLGLYCEROLS. Journal of Food Lipids, 2000, 7, 143-150.	1.0	29
251	Chemical Characteristics of Cold-Pressed Blackberry, Black Raspberry, and Blueberry Seed Oils and the Role of the Minor Components in Their Oxidative Stability. Journal of Agricultural and Food Chemistry, 2016, 64, 5410-5416.	5.2	29
252	Soluble and insoluble-bound fractions of phenolics and alkaloids and their antioxidant activities in raw and traditional chocolate: A comparative study. Journal of Functional Foods, 2018, 50, 164-171.	3.4	29

#	Article	IF	CITATIONS
253	Soybean ultrasound pre-treatment prior to soaking affects β-glucosidase activity, isoflavone profile and soaking time. Food Chemistry, 2018, 269, 404-412.	8.2	29
254	Impact of different drying processes on the lipid deterioration and color characteristics of <scp><i>Penaeus vannamei</i></scp> . Journal of the Science of Food and Agriculture, 2020, 100, 2544-2553.	3.5	29
255	Biological Activities of Camelina and Sophia Seeds Phenolics: Inhibition of LDL Oxidation, DNA Damage, and Pancreatic Lipase and αâ€Glucosidase Activities. Journal of Food Science, 2018, 83, 237-245.	3.1	28
256	The role of matrix metalloprotease (MMP) to the autolysis of sea cucumber (<i>Stichopus) Tj ETQq0 0 0 rgBT /Ov</i>	verlock 10	Tf 50 622 To
257	Improving oxidative stability of flaxseed oil with a mixture of antioxidants. Journal of Food Processing and Preservation, 2020, 44, e14355.	2.0	28
258	Quercetin and its ester derivatives inhibit oxidation of food, LDL and DNA. Food Chemistry, 2021, 364, 130394.	8.2	28
259	Antioxidant activity of extracts of defatted seeds of niger (Guizotia abyssinica). JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 443-450.	1.9	27
260	Antioxidant Measurement and Applications: An Overview. ACS Symposium Series, 2007, , 2-7.	0.5	27
261	ANTIOXIDANT ACTIVITY OF ENGLISH WALNUT (<i>JUGLANS REGIA</i> L.). Journal of Food Lipids, 2008, 15, 384-397.	1.0	27
262	Extraction and detailed characterization of phospholipid-enriched oils from six species of edible clams. Food Chemistry, 2018, 239, 1175-1181.	8.2	27
263	Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): Effects on growth performance and muscle lipid and fatty acid composition. PLoS ONE, 2018, 13, e0198538.	2.5	27
264	Prevention of Lipid Oxidation in Muscle Foods by Nitrite and Nitrite-Free Compositions. ACS Symposium Series, 1992, , 161-182.	0.5	26
265	Incorporation of docosahexaenoic acid (DHA) into evening primrose (Oenothera biennis L.) oil via lipase-catalyzed transesterification. Food Chemistry, 2004, 85, 489-496.	8.2	26
266	Direct infusion mass spectrometric identification of molecular species of glycerophospholipid in three species of edible whelk from Yellow Sea. Food Chemistry, 2018, 245, 53-60.	8.2	26
267	Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2382-2427.	11.7	26
268	Stability and stabilization of omega-3 oils: A review. Trends in Food Science and Technology, 2021, 118, 17-35.	15.1	26
269	α-Galactosides of Sucrose in Foods: Composition, Flatulence-Causing Effects, and Removal. ACS Symposium Series, 1997, , 127-151.	0.5	25

270 LIPID AND LIPID SOLUBLE COMPONENTS OF GONADS OF GREEN SEA URCHIN (STRONGYLOCENTROTUS) TJ ETQq0.0 0 rgBT_20verlock

#	Article	IF	CITATIONS
271	SEPARATION OF INDIVIDUAL CATECHINS FROM GREEN TEA USING SILICA GEL COLUMN CHROMATOGRAPHY AND HPLC. Journal of Food Lipids, 2003, 10, 165-177.	1.0	25
272	Effects of proteolysis and oxidation on mechanical properties of sea cucumber (Stichopus japonicus) during thermal processing and storage and their control. Food Chemistry, 2020, 330, 127248.	8.2	25
273	Action of endogenous proteases on texture deterioration of the bay scallop (Argopecten irradians) adductor muscle during cold storage and its mechanism. Food Chemistry, 2020, 323, 126790.	8.2	25
274	Isolation and identification of zincâ€chelating peptides from sea cucumber (<i>Stichopus japonicus</i>) protein hydrolysate. Journal of the Science of Food and Agriculture, 2019, 99, 6400-6407.	3.5	24
275	Effect of Chemical Randomization on Positional Distribution and Stability of Omega-3 Oil Triacylglycerols. Journal of Agricultural and Food Chemistry, 2010, 58, 8842-8847.	5.2	23
276	Insoluble-Bound Polyphenols Released from Guarana Powder: Inhibition of Alpha-Glucosidase and Proanthocyanidin Profile. Molecules, 2020, 25, 679.	3.8	23
277	A new analytical concept based on chemistry and toxicology for herbal extracts analysis: From phenolic composition to bioactivity. Food Research International, 2020, 132, 109090.	6.2	23
278	A Novel Processing Approach for Rapeseed and Mustard Seed-Removal of Undesirable Constituents by Methanol-Ammonia. Journal of Food Protection, 1988, 51, 743-749.	1.7	22
279	Antioxidant and Antiproliferative Potential of Pearled Barley (<i>Hordeum vulgarae</i> .). Pharmaceutical Biology, 2008, 46, 88-95.	2.9	22
280	Evaluation of the stability of tyrosol esters during <i>in vitro</i> gastrointestinal digestion. Food and Function, 2018, 9, 3610-3616.	4.6	22
281	Pigmentation of Artic Char (Salvelinus alpinus) by Dietary Carotenoids. Journal of Aquatic Food Product Technology, 1993, 2, 99-115.	1.4	21
282	EXTRACTION, FRACTIONATION AND ACTIVITY CHARACTERISTICS OF PROTEASES FROM SHRIMP PROCESSING DISCARDS. Journal of Food Biochemistry, 2003, 27, 221-236.	2.9	21
283	Antioxidant activity and inhibitory effects of lead (<i>Leucaena leucocephala)</i> seed extracts against lipid oxidation in model systems. Food Science and Technology International, 2013, 19, 365-376.	2.2	21
284	Apple flavonols and n-3 polyunsaturated fatty acid–rich fish oil lowers blood C-reactive protein in rats with hypercholesterolemia and acute inflammation. Nutrition Research, 2014, 34, 535-543.	2.9	21
285	Novel quercetin-3-O-glucoside eicosapentaenoic acid ester ameliorates inflammation and hyperlipidemia. Inflammopharmacology, 2015, 23, 173-185.	3.9	21
286	Phenolic Compounds and Antioxidant Capacity of Sea Cucumber (Cucumaria frondosa) Processing Discards as Affected by High-Pressure Processing (HPP). Antioxidants, 2022, 11, 337.	5.1	21
287	Partial molar volumes of amino acid derivatives in water. Journal of Solution Chemistry, 1983, 12, 295-301.	1.2	20
288	Effects of mechanical handling, storage on ice and ascorbic acid treatment on lipid oxidation in cultured Newfoundland blue mussel (Mytilus edulis). Food Chemistry, 2006, 99, 605-614.	8.2	20

#	Article	IF	CITATIONS
289	Antioxidant activity of phytosteryl phenolates in different model systems. Food Chemistry, 2013, 138, 1220-1224.	8.2	20
290	Chemical Changes and Oxidative Stability of Peanuts as Affected by the Dryâ€Blanching. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1101-1109.	1.9	20
291	Hydrolysis and Transport Characteristics of Tyrosol Acyl Esters in Rat Intestine. Journal of Agricultural and Food Chemistry, 2018, 66, 12521-12526.	5.2	20
292	DNA scission and LDL cholesterol oxidation inhibition and antioxidant activities of Bael (Aegle) Tj ETQq0 0 0 rgBT	/Overlock 2.7	10 Tf 50 62
293	Bioavailability and Metabolism of Food Bioactives and their Health Effects: A Review. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 8, .	2.4	20
294	Chromatographic separation of glucopyranosyl sinapate from canola meal. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 551-552.	1.9	19
295	Beneficial Health Effects and Drawbacks of Antinutrients and Phytochemicals in Foods. ACS Symposium Series, 1997, , 1-9.	0.5	19
296	Enzymatic acidolysis of an arachidonic acid single-cell oil with capric acid. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 887-892.	1.9	19
297	Phenolics in Food and Natural Health Products: An Overview. ACS Symposium Series, 2005, , 1-8.	0.5	19
298	Use of Protein Hydrolysate from Yellow Stripe Trevally (Selaroides leptolepis) as Microbial Media. Food and Bioprocess Technology, 2012, 5, 1317-1327.	4.7	19
299	Solvent and Extraction Conditions Control the Assayable Phenolic Content and Antioxidant Activities of Seeds of Black Beans, Canola and Millet. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 275-283.	1.9	19
300	A robust stripping method for the removal of minor components from edible oils. Food Production Processing and Nutrition, 2020, 2, .	3.5	19
301	Determination of soluble and insoluble-bound phenolic compounds in dehulled, whole, and hulls of green and black lentils using electrospray ionization (ESI)-MS/MS and their inhibition in DNA strand scission. Food Chemistry, 2021, 361, 130083.	8.2	19
302	Epigallocatechin gallate (EGCG) esters with different chain lengths fatty acids and their antioxidant activity in food and biological systems. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 1, .	2.4	19
303	Phenolic content, antioxidant and anti-inflammatory activities of seeds and leaves of date palm (Phoenix dactylifera L.). Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 5, .	2.4	19
304	Extraction of harp seal gastric proteases and their immobilization on chitin. Food Chemistry, 1995, 52, 71-76.	8.2	18
305	CONCENTRATION OF GAMMA LINOLENIC ACID (GLA) FROM BORAGE OIL BY UREA COMPLEXATION: OPTIMIZATION OF REACTION CONDITIONS. Journal of Food Lipids, 2000, 7, 163-174.	1.0	18

³⁰⁶Zinc-Chelating Mechanism of Sea Cucumber (Stichopus japonicus)-Derived Synthetic Peptides. Marine
Drugs, 2019, 17, 438.4.618

#	Article	IF	CITATIONS
307	Finger millet porridges subjected to different processing conditions showed low glycemic index and variable efficacy on plasma antioxidant capacity of healthy adults. Food Production Processing and Nutrition, 2020, 2, .	3.5	18
308	Compositional characteristics and oxidative stability of chia seed oil (Salvia hispanica L). Food Production Processing and Nutrition, 2020, 2, .	3.5	18
309	Evaluation of Absorption and Plasma Pharmacokinetics of Tyrosol Acyl Esters in Rats. Journal of Agricultural and Food Chemistry, 2020, 68, 1248-1256.	5.2	18
310	Phenolics from Winemaking Byâ€Products Better Decrease VLDLâ€Cholesterol and Triacylglycerol Levels than Those of Red Wine in Wistar Rats. Journal of Food Science, 2017, 82, 2432-2437.	3.1	18
311	Antioxidant Activity of Phenolic Compounds in Meat Model Systems. ACS Symposium Series, 1992, , 214-222.	0.5	17
312	SYNERGISTIC ACTIVITY OF CAPELIN PROTEIN HYDROLYSATES WITH SYNTHETIC ANTIOXIDANTS IN A MODEL SYSTEM. Journal of Food Lipids, 1999, 6, 271-275.	1.0	17
313	Tenderization of meat by salt-fermented sauce from shrimp processing by-products. Food Chemistry, 2005, 93, 243-249.	8.2	17
314	Measurement of Antioxidant Activity in Food and Biological Systems. ACS Symposium Series, 2007, , 36-66.	0.5	17
315	Protein hydrolysate from turkey meat and optimization of its antioxidant potential by response surface methodology. Poultry Science, 2018, 97, 1824-1831.	3.4	17
316	Optimizing the potential bioactivity of isoflavones from soybeans via ultrasound pretreatment: Antioxidant potential and NF $\hat{a} \in \hat{P}$ B activation. Journal of Food Biochemistry, 2019, 43, e13018.	2.9	17
317	Improvement of Phenolic Contents and Antioxidant Activities of Longan (Dimocarpus longan) Peel Extracts by Enzymatic Treatment. Waste and Biomass Valorization, 2020, 11, 3987-4002.	3.4	17
318	PHOTOCHEM® for Determination of Antioxidant Capacity of Plant Extracts. ACS Symposium Series, 2007, , 140-158.	0.5	16
319	Antioxidant activity of monooleyl and dioleyl <i>p</i> â€coumarates in in vitro and biological model systems. European Journal of Lipid Science and Technology, 2014, 116, 370-379.	1.5	16
320	Germination changes the isoflavone profile and increases the antioxidant potential of soybean. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 3, 144-150.	2.4	16
321	Phytochemicals of foods, beverages and fruit vinegars: chemistry and health effects. Asia Pacific Journal of Clinical Nutrition, 2008, 17 Suppl 1, 380-2.	0.4	16
322	Omega-3 Fatty Acid Composition and Stability of Seal Lipids. ACS Symposium Series, 1994, , 233-243.	0.5	15
323	Stabilization of butter with deodorized rosemary extract. European Food Research and Technology, 1998, 206, 99-102.	0.6	15
324	Structured lipids from high-laurate canola oil and long-chain omega-3 fatty acids. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 731-736.	1.9	15

#	ARTICLE	IF	CITATIONS
325	Optimization of Enzymatic Synthesis of Phytosteryl Caprylates Using Response Surface Methodology. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 657-666.	1.9	15
326	Effects of hot air drying process on lipid quality of whelks Neptunea arthritica cumingi Crosse and Neverita didyma. Journal of Food Science and Technology, 2019, 56, 4166-4176.	2.8	15
327	Effects of collagenase type I on the structural features of collagen fibres from sea cucumber (Stichopus japonicus) body wall. Food Chemistry, 2019, 301, 125302.	8.2	15
328	Seasonal Variation of Proximate Composition and Lipid Nutritional Value of Two Species of Scallops (<i>Chlamys farreri</i> and <i>Patinopecten yessoensis</i>). European Journal of Lipid Science and Technology, 2019, 121, 1800493.	1.5	15
329	Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa). Food Production Processing and Nutrition, 2021, 3, .	3.5	15
330	Functional properties of protein isolates from camelina (Camelina sativa (L.) Crantz) and flixweed (sophia, Descurainis sophia L.) seed meals. Food Production Processing and Nutrition, 2021, 3, .	3.5	15
331	ANTIOXIDANT ACTIVITY OF EXTRACTS OF <i>MALLOTUS PHILIPPINENSIS</i> FRUIT AND BARK. Journal of Food Lipids, 2007, 14, 280-297.	1.0	14
332	Effects of dietary oxidized oil and vitamin E on the growth, blood parameters and body composition of juvenile Atlantic cod <i>Gadus morhua</i> (Linnaeus 1758). Aquaculture Research, 2008, 39, ???-???.	1.8	14
333	Phenolics and alkaloids of raw cocoa nibs and husk: The role of soluble and insoluble-bound antioxidants. Food Bioscience, 2021, 42, 101085.	4.4	14
334	Antioxidant activity of faba bean extract and fractions thereof. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 2, .	2.4	14
335	Effect of High-Pressure Processing (HPP) on Phenolics of North Atlantic Sea Cucumber (<i>Cucumaria) Tj ETQq1 J</i>	l <u>9.7</u> 8431	4 <u>[</u> gBT /Over
336	Fate of Singrin in Methanol/Ammonia/Water-Hexane Extraction of B. juncea Mustard Seed. Journal of Food Science, 1990, 55, 793-795.	3.1	13
337	Cyanogenic Glycosides of Flaxseeds. ACS Symposium Series, 1997, , 171-185.	0.5	13
338	Comparison of FA compositions of selected tissues of phocid seals of Eastern Canada using one-way and multivariate techniques. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1095-1102.	1.9	13
339	Oxidative stability of marine oils as affected by added wheat germ oil. International Journal of Food Properties, 2017, 20, S3334-S3344.	3.0	13
340	Multistep Optimization of β-Glucosidase Extraction from Germinated Soybeans (Glycine max L. Merril) and Recovery of Isoflavone Aglycones. Foods, 2018, 7, 110.	4.3	13
341	Inhibitory effect of natural metal ion chelators on the autolysis of sea cucumber (Stichopus) Tj ETQq1 1 0.784314	⊦rgBT /Ov 6.2	erlock 10 Tf
342	Ellagitannins from jabuticaba (Myrciaria jaboticaba) seeds attenuated inflammation, oxidative stress, aberrant crypt foci, and modulated gut microbiota in rats with 1,2 dimethyl hydrazine-induced colon carcinogenesis. Food and Chemical Toxicology, 2021, 154, 112287.	3.6	13

FEREIDOON SHAHIDI

#	Article	IF	CITATIONS
343	Bioaccessibility and antioxidant activities of finger millet food phenolics. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 6, .	2.4	13
344	Effect of Methanol-Ammonia-Water Treatment on the Concentration of Individual Glucosinolates of Canola. Journal of Food Science, 1989, 54, 1306-1309.	3.1	12
345	Effect of methanol-ammonia-water treatment on the fate of glucosinolates. Journal of Agricultural and Food Chemistry, 1990, 38, 251-255.	5.2	12
346	Flavor and Lipid Chemistry of Seafoods: An Overview. ACS Symposium Series, 1997, , 1-8.	0.5	12
347	EFFECTS OF PROCESSING AND SQUALENE ON COMPOSITION AND OXIDATIVE STABILITY OF SEAL BLUBBER OIL. Journal of Food Lipids, 1999, 6, 159-172.	1.0	12
348	Oxidative stability of structured lipids produced from borage (Borago officinalisL.) and evening primrose (Oenothera biennisL.) oils with docosahexaenoic acid. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1003-1013.	1.9	12
349	Effect of protein oxidation and degradation on texture deterioration of readyâ€toâ€eat shrimps during storage. Journal of Food Science, 2020, 85, 2673-2680.	3.1	12
350	Liberation of insoluble-bound phenolics from lentil hull matrices as affected by Rhizopus oryzae fermentation: Alteration in phenolic profiles and their inhibitory capacities against low-density lipoprotein (LDL) and DNA oxidation. Food Chemistry, 2021, 363, 130275.	8.2	12
351	Revisiting DPPH (2,2-diphenyl-1-picrylhydrazyl) assay as a useful tool in antioxidant evaluation: A new IC100 concept to address its limitations. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 7, .	2.4	12
352	Lipids in Flavor Formation. ACS Symposium Series, 2000, , 24-43.	0.5	11
353	Lipase-assisted acidolysis of high-laurate canola oil with eicosapentaenoic acid. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 875-879.	1.9	11
354	Lipid profiles in different parts of two species of scallops (Chlamys farreri and Patinopecten) Tj ETQq0 0 0 rgBT /	Overlock 1	10]f 50 302
355	Effect of Various Hotâ€Air Drying Processes on Clam <i>Ruditapes philippinarum</i> Lipids: Composition Changes and Oxidation Development. Journal of Food Science, 2018, 83, 2976-2982.	3.1	11
356	Trans, trans-2,4-decadienal impairs vascular endothelial function by inducing oxidative/nitrative stress and apoptosis. Redox Biology, 2020, 34, 101577.	9.0	11
357	Regular and decaffeinated espresso coffee capsules: Unravelling the bioaccessibility of phenolic compounds and their antioxidant properties in milk model system upon in vitro digestion. LWT - Food Science and Technology, 2021, 135, 110255.	5.2	11
358	Wood extracts as unique sources of soluble and insoluble-bound phenolics: reducing power, metal chelation and inhibition of oxidation of human LDL-cholesterol and DNA strand scission. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 8, .	2.4	11
359	Lipid and Pigment Extraction from Mechanically Separated Seal Meat. Journal of Food Science, 1991, 56, 1295-1297.	3.1	10

#	Article	IF	CITATIONS
361	Topâ€down lignomic matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight tandem mass spectrometry analysis of lignin oligomers extracted from date palm wood. Rapid Communications in Mass Spectrometry, 2019, 33, 539-560.	1.5	10
362	Natural bioactive substances for the control of food-borne viruses and contaminants in food. Food Production Processing and Nutrition, 2020, 2, .	3.5	10
363	The Effects of Acyl Chain Length on Antioxidant Efficacy of Mono- and Multi-Acylated Resveratrol: A Comparative Assessment. Molecules, 2022, 27, 1001.	3.8	10
364	Modified Oils Containing Highly Unsaturated Fatty Acids and Their Stability. ACS Symposium Series, 2001, , 162-173.	0.5	9
365	STRUCTURED LIPIDS: ACIDOLYSIS OF GAMMA-LINOLENIC ACID-RICH OILS WITH n-3 POLYUNSATURATED FATTY ACIDS. Journal of Food Lipids, 2002, 9, 309-323.	1.0	9
366	Antioxidant and Antibacterial Properties of Extracts of Green Tea Polyphenols. ACS Symposium Series, 2005, , 94-106.	0.5	9
367	Antiobesity Effect of Allenic Carotenoid, Fucoxanthin. , 0, , 145-160.		9
368	Effect of Enzymatic Randomization on Positional Distribution and Stability of Seal Blubber and Menhaden Oils. Journal of Agricultural and Food Chemistry, 2011, 59, 4232-4237.	5.2	9
369	Biomarkers of oxidative stress and cellular-based assays of indirect antioxidant measurement. , 0, , 165-186.		9
370	Encyclopedia of Food Chemistry: Protein–Phenol Interactions. , 2019, , 532-538.		9
371	Impact of Frying on Changes in Clam (<i>Ruditapes philippinarum</i>) Lipids and Frying Oils: Compositional Changes and Oxidative Deterioration. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1367-1377.	1.9	9
372	Conjugated Fatty Acids in Muscle Food Products and Their Potential Health Benefits: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 13530-13540.	5.2	9
373	Lipophilised resveratrol affects the generation of reactive nitrogen species in murine macrophages and cell viability of human cancer cell lines. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 7, .	2.4	9
374	Antioxidant effects of gallic acid alkyl esters of various chain lengths in oyster during frying process. International Journal of Food Science and Technology, 2021, 56, 2938-2945.	2.7	9
375	Thioglucosides of <i>Brassica</i> Oilseeds and Their Process-Induced Chemical Transformations. ACS Symposium Series, 1994, , 106-126.	0.5	8
376	Antioxidants in Plants and Oleaginous Seeds. ACS Symposium Series, 2002, , 162-175.	0.5	8
377	ACIDOLYSIS OF SEAL BLUBBER OIL WITH LAURIC ACID. Journal of Food Lipids, 2007, 14, 78-96.	1.0	8
378	Enzymatic Incorporation of Selected Long-Chain Fatty Acids into Triolein. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 533-541.	1.9	8

#	Article	IF	CITATIONS
379	Functional Food and Health: An Overview. ACS Symposium Series, 2008, , 1-6.	0.5	8
380	Bioactives From Seafood Processing By-Products. , 2019, , 280-288.		8
381	InajÃ _i oil processing by-product: A novel source of bioactive catechins and procyanidins from a Brazilian native fruit. Food Research International, 2021, 144, 110353.	6.2	8
382	Nutritional Implications of Canola Condensed Tannins. ACS Symposium Series, 1997, , 186-208.	0.5	7
383	Identification of Potent Odorants in Seal Blubber Oil by Direct Thermal Desorption-Gas Chromatography-Olfactometry. ACS Symposium Series, 2001, , 221-234.	0.5	7
384	Marine Lipids as Affected by Processing and Their Quality Preservation by Natural Antioxidants. ACS Symposium Series, 2002, , 1-13.	0.5	7
385	LIPASE-CATALYZED ACIDOLYSIS OF ALGAL OILS WITH CAPRIC ACID: OPTIMIZATION OF REACTION CONDITIONS USING RESPONSE SURFACE METHODOLGY. Journal of Food Lipids, 2004, 11, 147-163.	1.0	7
386	Acidolysis of Tristearin with Selected Long-Chain Fatty Acids. Journal of Agricultural and Food Chemistry, 2007, 55, 1955-1960.	5.2	7
387	MEASURING OXIDATIVE STABILITY OF STRUCTURED LIPIDS BY PROTON NUCLEAR MAGNETIC RESONANCE. Journal of Food Lipids, 2007, 14, 217-231.	1.0	7
388	Omega-3 Fatty Acids in Health and Disease. , 2011, , 1-29.		7
389	Antioxidant activity of phytosteryl phenolates. European Journal of Lipid Science and Technology, 2014, 116, 1701-1707.	1.5	7
390	Anti-atherogenic effects of phytosteryl oleates in apo-E deficient mice. Journal of Functional Foods, 2016, 21, 97-103.	3.4	7
391	Date palm wood as a new source of phenolic antioxidants and in preparation of smoked salmon. Journal of Food Biochemistry, 2019, 43, e12760.	2.9	7
392	Tocopherols and Tocotrienols: Sources, Analytical Methods, and Effects in Food and Biological Systems. , 2019, , 561-570.		7
393	Alkaline conditions better extract anti-inflammatory polysaccharides from winemaking by-products. Food Research International, 2020, 131, 108532.	6.2	7
394	<i>trans</i> , <i>trans</i> -2,4-Decadienal induces endothelial cell injury by impairing mitochondrial function and autophagic flux. Food and Function, 2021, 12, 5488-5500.	4.6	7
395	Do Flavonoids from Durum Wheat Contribute to Its Bioactive Properties? A Prospective Study. Molecules, 2021, 26, 463.	3.8	7
396	Quality Characteristics of Edible Oils. Advances in Experimental Medicine and Biology, 2004, 542, 239-249.	1.6	7

#	Article	IF	CITATIONS
397	Lipophilized epigallocatechin (EGC) and its derivatives: Inhibition of oxidation of β-carotene–linoleate oil-in-water emulsion and DNA strand scission. Journal of Food and Drug Analysis, 2020, 28, .	1.9	7
398	Honeybee Pollen From Southern Chile: Phenolic Profile, Antioxidant Capacity, Bioaccessibility, and Inhibition of DNA Damage. Frontiers in Pharmacology, 2022, 13, 775219.	3.5	7
399	Interactions among dietary phytochemicals and nutrients: Role of cell membranes. Trends in Food Science and Technology, 2022, 124, 38-50.	15.1	7
400	Soluble Free, Esterified and Insoluble-Bound Phenolic Antioxidants from Chickpeas Prevent Cytotoxicity in Human Hepatoma HuH-7 Cells Induced by Peroxyl Radicals. Antioxidants, 2022, 11, 1139.	5.1	7
401	Seal meat: A unique source of muscle food for health and nutrition. Food Reviews International, 1996, 12, 283-302.	8.4	6
402	Oxidative Stability of Encapsulated Seal Blubber Oil. ACS Symposium Series, 1997, , 139-151.	0.5	6
403	Nomenclature and general classification of antioxidant activity/capacity assays. , 0, , 1-19.		6
404	Lipid Profile and Glycerophospholipid Molecular Species in Two Species of Edible Razor Clams <i>Sinonovacula constricta</i> and <i>Solen gouldi</i> . Lipids, 2019, 54, 347-356.	1.7	6
405	Fatty acid, triacylglycerol and minor component profiles affect oxidative stability of camelina and sophia seed oils. Food Bioscience, 2021, 40, 100849.	4.4	6
406	Ultrasound- and hemicellulase-assisted extraction increase Î ² -glucosidase activity, the content of isoflavone aglycones and antioxidant potential of soymilk. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 6	2.4	6
407	Effect of chitosan coatings incorporated with antioxidant of bamboo leaves and potassium sorbate on lipid oxidation and hydrolysis of scallop (Chlamys farreri) during refrigerated storage. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 8, .	2.4	6
408	Marine Lipids and Their Stabilization with Green Tea and Catechins. ACS Symposium Series, 1997, , 186-197.	0.5	5
409	Glucosinolates in <i>Brassica</i> Oilseeds: Processing Effects and Extraction. ACS Symposium Series, 1997, , 152-170.	0.5	5
410	Antioxidant Activity of Blueberry and Other vaccinium Species. ACS Symposium Series, 2003, , 149-160.	0.5	5
411	Oxidative Stability and Shelf Life of Meat and Meat Products. , 2016, , 373-389.		5
412	A Highly Stable Soybean Oilâ€Rich Miscella Obtained by Ethanolic Extraction as a Promising Biodiesel Feedstock. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1101-1109.	1.9	5
413	Electron transfer-based antioxidant capacity assays and the cupric ion reducing antioxidant capacity (CUPRAC) assay. , 0, , 57-75.		5
414	Antiglycative and anti-inflammatory effects of lipophilized tyrosol derivatives. Food Production Processing and Nutrition, 2020, 2, .	3.5	5

#	Article	IF	CITATIONS
415	Effects of antioxidants of bamboo leaves (AOB) on the oxidative susceptibility of glycerophosphocholine and glycerophosphoethanolamine in dried scallop (Argopecten irradians) adductor muscle during storage. LWT - Food Science and Technology, 2020, 134, 110214.	5.2	5
416	In vivo mechanism of action of matrix metalloprotease (MMP) in the autolysis of sea cucumber (<i>Stichopus japonicus</i>). Journal of Food Processing and Preservation, 2020, 44, e14383.	2.0	5
417	New Findings in the Amino Acid Profile and Gene Expression in Contrasting Durum Wheat Gluten Strength Genotypes during Grain Filling. Journal of Agricultural and Food Chemistry, 2020, 68, 5521-5528.	5.2	5
418	Riboflavin-Sensitized Photooxidation of Low-Density-Lipoprotein (LDL) Cholesterol: A Culprit in the Development of Cardiovascular Diseases (CVDs). Journal of Agricultural and Food Chemistry, 2021, 69, 4204-4209.	5.2	5
419	Functional Bioactive Proteins and Peptides in Nutrigenomics. , 0, , 129-144.		5
420	Glycerophospholipids in sea cucumber (Stichopus japonicus) and its processing by-products serve as bioactives and functional food ingredients. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 1, .	2.4	5
421	Enzymatic Synthesis and Antioxidant Activity of Mono- and Diacylated Epigallocatechin Gallate and Related By-Products. Journal of Agricultural and Food Chemistry, 2022, 70, 9227-9242.	5.2	5
422	Stabilization of Canola Oil by Natural Antioxidants. ACS Symposium Series, 1994, , 301-314.	0.5	4
423	Importance of Non-Triacylglycerols to Flavor Quality of Edible Oils. ACS Symposium Series, 2005, , 3-18.	0.5	4
424	Beans: A Source of Natural Antioxidants. ACS Symposium Series, 2005, , 83-93.	0.5	4
425	Evaluation of chemopreventive effects in colitis-associated colon tumourigenesis and oral toxicity of the lipophilic epigallocatechin gallate-docosahexaenoic acid. Journal of Functional Foods, 2016, 24, 48-56.	3.4	4
426	Physico-chemical principles of antioxidant action, including solvent and matrix dependence and interfacial phenomena. , 0, , 225-272.		4
427	Lipid oxidation and aldehyde formation during <i>in vitro</i> gastrointestinal digestion of roasted scallop (<i>Patinopecten yessoensis</i>) – the role of added antioxidant of bamboo leaves. Food and Function, 2021, 12, 11046-11057.	4.6	4
428	Omics in Nutrition and Health Research. , 0, , 11-29.		4
429	Heat-Induced Changes of Sulfhydryl Groups of Muscle Foods. ACS Symposium Series, 1994, , 171-179.	0.5	3
430	Thermally Generated Flavors from Seal Protein Hydrolysate. ACS Symposium Series, 1997, , 76-84.	0.5	3
431	Quality Management of Marine Nutraceuticals. ACS Symposium Series, 2001, , 76-87.	0.5	3
432	Effect of an Artificial Diet on Lipid, Free Amino Acid, and Carotenoid Composition of Green Sea Urchin Gonads. ACS Symposium Series, 2003, , 83-93.	0.5	3

#	Article	IF	CITATIONS
433	Antioxidant Activity of Sesame Fractions. ACS Symposium Series, 2005, , 33-45.	0.5	3
434	Antioxidant Properties of Wheat Grain and its Fractions. , 0, , 7-23.		3
435	Antioxidants in oxidation control. , 0, , 287-320.		3
436	Omega-3 Fatty Acids. , 2019, , 465-471.		3
437	Oxidation of lipids. , 2021, , 125-170.		3
438	Phytochemicals in Oilseeds. , 2002, , .		3
439	Antioxidants, Polyphenols, and Adipose Inflammation. Oxidative Stress and Disease, 2009, , 233-253.	0.3	3
440	Vitamin C and Phenolic Antioxidants of Jua (Ziziphus joazeiro M.) Pulp: A Rich Underexplored Brazilian Source of Ellagic Acid Recovered by Aqueous Ultrasound-Assisted Extraction. Molecules, 2022, 27, 627.	3.8	3
441	Structural Characteristics of Marine Lipids and Preparation of ω3 Concentrates. ACS Symposium Series, 1997, , 240-254.	0.5	2
442	Functional Seafood Products. ACS Symposium Series, 1998, , 29-49.	0.5	2
443	Free Radicals in Foods: Chemistry, Nutrition, and Health Effects. ACS Symposium Series, 2002, , 1-9.	0.5	2
444	The Color of Meat. , 0, , 23-66.		2
445	ENZYMATIC ACIDOLYSIS OF EVENING PRIMROSE OIL WITH DOCOSAHEXAENOIC ACID USING RESPONSE SURFACE METHODOLOGY. Journal of Food Lipids, 2006, 13, 235-250.	1.0	2
446	Dietary Supplements: An Overview. ACS Symposium Series, 2008, , 2-8.	0.5	2
447	Bioactives from Marine Resources. ACS Symposium Series, 2008, , 24-34.	0.5	2
448	An Overview of Functional Food Regulation in North America, European Union, Japan and Australia. , 2010, , 257-292.		2
449	Storage Stability of Protein Hydrolysate from Yellow Stripe Trevally (<i>Selaroides leptolepis</i>). International Journal of Food Properties, 2012, 15, 1042-1053.	3.0	2
450	Effect of Ice Storage on the Chemical Composition and Lipid Quality in Fat Greenling (Hexagrammos) Tj ETQq0 0	0 rgBT /0 1.4	verlock 10 Tf 2

105-120.

#	Article	IF	CITATIONS
451	Peptidomics. , 0, , 375-386.		2
452	Mono- and dioleyl p-coumarate phenolipids and their antioxidant activity in a muscle food model system. Food Production Processing and Nutrition, 2022, 4, .	3.5	2
453	Antioxidant interactions among hydrophilic and lipophilic dietary phytochemicals based on inhibition of lowâ€density lipoprotein and <scp>DNA</scp> damage. Journal of Food Biochemistry, 2022, 46, .	2.9	2
454	Partial molar volumes of methoxybenzenes in carbon tetrachloride. Journal of Solution Chemistry, 1983, 12, 287-293.	1.2	1
455	Phenolic Compounds of Brassica Oilseeds. ACS Symposium Series, 1992, , 130-142.	0.5	1
456	Positional distribution of FA in TAG of enzymatically modified borage and evening primrose oils. Lipids, 2002, 37, 803-810.	1.7	1
457	Food Factors in Health Promotion and Disease Prevention. ACS Symposium Series, 2003, , 2-8.	0.5	1
458	Structured Lipids Enriched with Omega-3 and Omega-6 Highly Unsaturated Fatty Acids. ACS Symposium Series, 2003, , 16-26.	0.5	1
459	Production and stability of structured lipids from algal oils and capric acid. BioFactors, 2004, 22, 315-317.	5.4	1
460	Flavor of Meat. , 0, , 105-131.		1
461	Antioxidant Activities and Phytochemicals in Hazelnut (Corylus avellana L.) and Hazelnut By-Products. Nutraceutical Science and Technology, 2008, , .	0.0	1
462	Licorice Flavonoids. , 0, , 291-300.		1
463	Analysis of Flavonoid-Protein Interactions by Advanced Techniques. , 2019, , 539-543.		1
464	Green Tea Polyphenol-Modulated Genome Functions for Protective Health Benefits. , 0, , 201-237.		1
465	Regulation of Gene Transcription by Fatty Acids. , 0, , 97-114.		1
466	Suppressing the oxidation of LDL and DNA strand breakage of bioactives in dehulled and hull fraction of lentils. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 12, .	2.4	1
467	Challenges and Current Solutions in Proteomic Sample Preparations. , 0, , 351-365.		1
468	Chickpeas from a Chilean Region Affected by a Climate-Related Catastrophe: Effects of Water Stress on Grain Yield and Flavonoid Composition. Molecules, 2022, 27, 691.	3.8	1

#	Article	IF	CITATIONS
469	Genomics and Proteomics in Allergy. , 0, , 67-81.		1
470	Beneficial Effects of Conjugated Linoleic Acid. , 0, , 83-96.		1
471	Seal Blubber Oil and Its Nutraceutical Products. ACS Symposium Series, 2001, , 142-150.	0.5	0
472	Seal blubber oil and its long-chain polyunsaturated fatty acids: processing technologies and applications. Fisheries Science, 2002, 68, 1418-1421.	1.6	0
473	Nutraceutical Beverages: An Overview. ACS Symposium Series, 2003, , 1-5.	0.5	0
474	History of the Curing Process. , 0, , 7-21.		0
475	Oxidative Stability of Meat Lipids. , 0, , 67-104.		0
476	Meat Microbiology. , 0, , 133-151.		0
477	The Fate of Nitrite. , 0, , 153-174.		0
478	Potential Health Concerns About Nitrite. , 0, , 175-208.		0
479	Phenolic Content and Antioxidant Activity of Whole-Wheat Grain and Its Components. ACS Symposium Series, 2008, , 110-124.	0.5	0
480	Isoprenols. , 0, , 301-310.		0
481	Food Science and Technology. , 2010, , 513-514.		0
482	Global Legislation for Fish Safety and Quality. , 2010, , 335-347.		0
483	Food Science and Technology. , 2010, , 543-544.		0
484	Oilseed Processing and Fat Modification. , 2013, , 363-384.		0
485	Bioactive peptides in health and disease: an overview. , 2021, , 1-26.		0
486	Changing the Landscape: An Introduction to the Agricultural and Food Chemistry Technical Program at the 258th American Chemical Society National Meeting in San Diego. Journal of Agricultural and Food Chemistry, 2020, 68, 12769-12772.	5.2	0

#	Article	IF	CITATIONS
487	Nutrigenomics and Proteomics in Health and Disease: An Overview. , 0, , 1-10.		0
488	Alteration in Gene Expression and Proteomic Profiles by Soy Isoflavone. , 0, , 181-200.		0
489	Oat Avenanthramides: A Novel Antioxidant. , 0, , 239-249.		0
490	Cancer-Preventive Effects and Molecular Actions of Anthocyanins. , 0, , 251-261.		0
491	Food Components Activating Capsaicin Receptor TRPV1. , 0, , 263-272.		0
492	New Therapeutic Effects of Anthocyanins: Antiobesity Effect, Antidiabetes Effect, and Vision Improvement. , 0, , 273-290.		0
493	Anti-inflammatory and Anticarcinogenesis Potentials of Citrus Coumarins and Polymethylated Flavonoids. , 0, , 311-324.		0
494	Probiotics: Food for Thought. , 0, , 325-338.		0
495	Microarrays: A Powerful Tool for Studying the Functions of Food and Its Nutrients. , 0, , 339-349.		0
496	Computational Methods in Cancer Gene Networking. , 0, , 367-374.		0
497	Toward Personalized Nutrition and Medicine: Promises and Challenges. , 0, , 31-46.		0
498	Obesity and Nuclear Receptors: Effective Genomic Strategies in Functional Foods. , 0, , 47-58.		0
499	Inflammatory Genes Involved in Obesity-Induced Inflammatory Responses and Pathologies. , 0, , 59-65.		0
500	Nonnutrient Functionality of Amino Acids. , 0, , 115-127.		0