List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7137573/publications.pdf Version: 2024-02-01

Δρτημό Ρ. Δρησιά

#	Article	IF	CITATIONS
1	Sex differences in kappa opioid receptor antinociception is influenced by the number of X chromosomes in mouse. Journal of Neuroscience Research, 2022, 100, 183-190.	1.3	15
2	In Memoriam, Roger A. Gorski (1935–2021). Frontiers in Neuroendocrinology, 2022, 64, 100969.	2.5	0
3	Y-Chromosome Gene, <i>Uty</i> , Protects Against Pulmonary Hypertension by Reducing Proinflammatory Chemokines. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 186-196.	2.5	24
4	X chromosome agents of sexual differentiation. Nature Reviews Endocrinology, 2022, 18, 574-583.	4.3	18
5	Sex chromosome complement affects multiple aspects of reversalâ€learning task performance in mice. Genes, Brain and Behavior, 2021, 20, e12685.	1.1	8
6	Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocrine Reviews, 2021, 42, 219-258.	8.9	61
7	X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals. Journal of Neuroinflammation, 2021, 18, 70.	3.1	35
8	Sex Differences in the Immune System Become Evident in the Perinatal Period in the Four Core Genotypes Mouse. Frontiers in Endocrinology, 2021, 12, 582614.	1.5	8
9	Effect of sex chromosomes versus hormones in neonatal lung injury. JCI Insight, 2021, 6, .	2.3	18
10	Monosomy X in Female Mice Influences the Regional Formation and Augments the Severity of Angiotensin II–Induced Aortopathies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 269-283.	1.1	6
11	Cardiac proteomics reveals sex chromosome-dependent differences between males and females that arise prior to gonad formation. Developmental Cell, 2021, 56, 3019-3034.e7.	3.1	37
12	Paul S. Burgoyne (1946-2020). Development (Cambridge), 2020, 147, .	1.2	1
13	A second X chromosome contributes to resilience in a mouse model of Alzheimer's disease. Science Translational Medicine, 2020, 12, .	5.8	107
14	Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neuroscience and Biobehavioral Reviews, 2020, 119, 1-8.	2.9	57
15	Transcriptional analysis of the multiple Sry genes and developmental program at the onset of testis differentiation in the rat. Biology of Sex Differences, 2020, 11, 28.	1.8	5
16	Hypothalamic oestrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure. Nature Metabolism, 2020, 2, 351-363.	5.1	61
17	Sexual differentiation of brain and other tissues: Five questions for the next 50Âyears. Hormones and Behavior, 2020, 120, 104691.	1.0	43
18	X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. Journal of Clinical Investigation, 2020, 130, 5688-5702.	3.9	62

#	Article	IF	CITATIONS
19	Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits. Cell Metabolism, 2019, 29, 932-949.e4.	7.2	79
20	Reversal Learning Performance in the XYâ^— Mouse Model of Klinefelter and Turner Syndromes. Frontiers in Behavioral Neuroscience, 2019, 13, 201.	1.0	7
21	XX sex chromosome complement promotes atherosclerosis in mice. Nature Communications, 2019, 10, 2631.	5.8	48
22	Rethinking sex determination of non-gonadal tissues. Current Topics in Developmental Biology, 2019, 134, 289-315.	1.0	42
23	The mouse as a model of fundamental concepts related to Turner syndrome. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2019, 181, 133-142.	0.7	9
24	Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26779-26787.	3.3	53
25	The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity. Journal of Clinical Investigation, 2019, 129, 3852-3863.	3.9	105
26	The Y Chromosome Plays a Protective Role in Experimental Hypoxic Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 952-955.	2.5	50
27	Sexual Inequality in the Cancer Cell. Cancer Research, 2018, 78, 5504-5505.	0.4	29
28	Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics, 2017, 18, 89.	1.2	40
29	Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 746-756.	1.1	224
30	A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism. Cell Metabolism, 2017, 25, 1216-1230.	7.2	179
31	Y chromosome's roles in sex differences in disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3787-3789.	3.3	27
32	Incorporating sex as a biological variable in neuroscience: what do we gain?. Nature Reviews Neuroscience, 2017, 18, 707-708.	4.9	52
33	A general theory of sexual differentiation. Journal of Neuroscience Research, 2017, 95, 291-300.	1.3	208
34	Considering sex as a biological variable in preclinical research. FASEB Journal, 2017, 31, 29-34.	0.2	285
35	Sexual Differentiation of Brain and Behavior in Birds. , 2017, , 185-224.		9

36 Sex Differences in the Age of Genetics. , 2017, , 33-48.

#	Article	IF	CITATIONS
37	A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biology of Sex Differences, 2016, 7, 68.	1.8	99
38	Report of the National Heart, Lung, and Blood Institute Working Group on Sex Differences Research in Cardiovascular Disease. Hypertension, 2016, 67, 802-807.	1.3	58
39	Sexual Differentiation of the Brain and Behavior: A Primer. , 2016, , 1-30.		0
40	The importance of having two X chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150113.	1.8	89
41	Sexual Differentiation of the Brain and Behavior: A Primer. , 2016, , 2139-2168.		7
42	The <scp>XX</scp> Sex Chromosome Complement is Required in Male and Female Mice for Enhancement of Immunity Induced by Exposure to 3,4â€Dichloropropionanilide. American Journal of Reproductive Immunology, 2015, 74, 136-147.	1.2	9
43	Are females more variable than males in gene expression? Meta-analysis of microarray datasets. Biology of Sex Differences, 2015, 6, 18.	1.8	69
44	Increased High-Density Lipoprotein Cholesterol Levels in Mice With XX Versus XY Sex Chromosomes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1778-1786.	1.1	72
45	Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes. Hormones and Behavior, 2015, 75, 55-63.	1.0	55
46	Four Core Genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels. BMC Research Notes, 2015, 8, 69.	0.6	69
47	Sex Differences in Ischemic Stroke Sensitivity Are Influenced by Gonadal Hormones, Not by Sex Chromosome Complement. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 221-229.	2.4	101
48	Abstract 16433: Protection Conferred by Y-chromosome Against Hypoxia-induced Pulmonary Hypertension is Not Due to Ddx3y Gene. Circulation, 2015, 132, .	1.6	1
49	Sex chromosome complement influences operant responding for a palatable food in mice. Genes, Brain and Behavior, 2014, 13, 527-534.	1.1	26
50	XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2806-2811.	3.3	106
51	The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biology of Sex Differences, 2014, 5, 8.	1.8	106
52	Conceptual frameworks and mouse models for studying sex differences in physiology and disease: Why compensation changes the game. Experimental Neurology, 2014, 259, 2-9.	2.0	79
53	The number of X chromosomes influences protection from cardiac ischaemia/reperfusion injury in mice: one X is better than two. Cardiovascular Research, 2014, 102, 375-384.	1.8	74
54	X chromosome regulation of autosomal gene expression in bovine blastocysts. Chromosoma, 2014, 123, 481-489.	1.0	7

#	Article	IF	CITATIONS
55	Feminized Behavior and Brain Gene Expression in a Novel Mouse Model of Klinefelter Syndrome. Archives of Sexual Behavior, 2014, 43, 1043-1057.	1.2	19
56	The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance. Biology of Sex Differences, 2013, 4, 15.	1.8	31
57	Cellâ€autonomous sex determination outside of the gonad. Developmental Dynamics, 2013, 242, 371-379.	0.8	63
58	What a Difference an X or Y Makes: Sex Chromosomes, Gene Dose, and Epigenetics in Sexual Differentiation. Handbook of Experimental Pharmacology, 2013, , 67-88.	0.9	51
59	Gonadal- and Sex-Chromosome-Dependent Sex Differences in the Circadian System. Endocrinology, 2013, 154, 1501-1512.	1.4	109
60	X and Y Chromosome Complement Influence Adiposity and Metabolism in Mice. Endocrinology, 2013, 154, 1092-1104.	1.4	89
61	Metabolic impact of sex chromosomes. Adipocyte, 2013, 2, 74-79.	1.3	86
62	The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice. PLoS Genetics, 2012, 8, e1002709.	1.5	247
63	Understanding the Sexome: Measuring and Reporting Sex Differences in Gene Systems. Endocrinology, 2012, 153, 2551-2555.	1.4	92
64	Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17245-17252.	3.3	55
65	Sex Differences in the Brain: The Not So Inconvenient Truth. Journal of Neuroscience, 2012, 32, 2241-2247.	1.7	576
66	The end of gonad-centric sex determination in mammals. Trends in Genetics, 2012, 28, 55-61.	2.9	181
67	Reframing sexual differentiation of the brain. Nature Neuroscience, 2011, 14, 677-683.	7.1	600
68	Karyotypic polymorphism of the zebra finch Z chromosome. Chromosoma, 2011, 120, 255-264.	1.0	25
69	Possible differences in the two Z chromosomes in male chickens and evolution of MHM sequences in Galliformes. Chromosoma, 2011, 120, 587-598.	1.0	19
70	Zebra finch cell lines from naturally occurring tumors. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 280-282.	0.7	13
71	Sex chromosome complement contributes to sex differences in coxsackievirus B3 but not influenza A virus pathogenesis. Biology of Sex Differences, 2011, 2, 8.	1.8	76
72	Factors Causing Sex differences in Birds. Avian Biology Research, 2011, 4, 44-51.	0.4	24

#	Article	IF	CITATIONS
73	Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17β-HSD type 4. BMC Neuroscience, 2010, 11, 47.	0.8	24
74	Promoting the understanding of sex differences to enhance equity and excellence in biomedical science. Biology of Sex Differences, 2010, 1, 1.	1.8	46
75	Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biology of Sex Differences, 2010, 1, 6.	1.8	218
76	The genome of a songbird. Nature, 2010, 464, 757-762.	13.7	770
77	Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds. Genome Research, 2010, 20, 512-518.	2.4	112
78	Sex Chromosome Effects Unmasked in Angiotensin II–Induced Hypertension. Hypertension, 2010, 55, 1275-1282.	1.3	120
79	Dissociation of Genetic and Hormonal Influences on Sex Differences in Alcoholism-Related Behaviors. Journal of Neuroscience, 2010, 30, 9140-9144.	1.7	114
80	Elucidating the Role of Gonadal Hormones in Sexually Dimorphic Gene Coexpression Networks. Endocrinology, 2009, 150, 1235-1249.	1.4	224
81	What does the "four core genotypes―mouse model tell us about sex differences in the brain and other tissues?. Frontiers in Neuroendocrinology, 2009, 30, 1-9.	2.5	480
82	Disruption of FEM1C-W gene in zebra finch: evolutionary insights on avian ZW genes. Chromosoma, 2009, 118, 323-334.	1.0	7
83	Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma, 2009, 118, 527-536.	1.0	45
84	The role of LINEs and CpG islands in dosage compensation on the chicken Z chromosome. Chromosome Research, 2009, 17, 727-36.	1.0	9
85	Mouse Models for Evaluating Sex Chromosome Effects that Cause Sex Differences in Nonâ€Gonadal Tissues. Journal of Neuroendocrinology, 2009, 21, 377-386.	1.2	134
86	X chromosome number causes sex differences in gene expression in adult mouse striatum. European Journal of Neuroscience, 2009, 29, 768-776.	1.2	66
87	Systems biology asks new questions about sex differences. Trends in Endocrinology and Metabolism, 2009, 20, 471-476.	3.1	38
88	The organizational–activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Hormones and Behavior, 2009, 55, 570-578.	1.0	503
89	Molecular cloning of zebra finch W chromosome repetitive sequences: evolution of the avian W chromosome. Chromosoma, 2008, 117, 111-121.	1.0	19
90	Sex difference in neural tube defects in <i>p53</i> â€null mice is caused by differences in the complement of X not Y genes. Developmental Neurobiology, 2008, 68, 265-273.	1.5	88

#	Article	IF	CITATIONS
91	The Songbird Neurogenomics (SoNG) Initiative: Community-based tools and strategies for study of brain gene function and evolution. BMC Genomics, 2008, 9, 131.	1.2	126
92	A dose–response study of estradiol's effects on the developing zebra finch song system. Neuroscience Letters, 2008, 445, 158-161.	1.0	19
93	Sex chromosome complement affects nociception in tests of acute and chronic exposure to morphine in mice. Hormones and Behavior, 2008, 53, 124-130.	1.0	85
94	Sex Chromosome Complement Affects Nociception and Analgesia in Newborn Mice. Journal of Pain, 2008, 9, 962-969.	0.7	44
95	A Bird's-Eye View of Sex Chromosome Dosage Compensation. Annual Review of Genomics and Human Genetics, 2008, 9, 109-127.	2.5	84
96	A role for sex chromosome complement in the female bias in autoimmune disease. Journal of Experimental Medicine, 2008, 205, 1099-1108.	4.2	317
97	Effects of long-term flutamide treatment during development in zebra finches. Neuroscience Letters, 2007, 418, 92-96.	1.0	21
98	Regional differences in dosage compensation on the chicken Z chromosome. Genome Biology, 2007, 8, R202.	13.9	98
99	Reduced threshold for cortical spreading depression in female mice. Annals of Neurology, 2007, 61, 603-606.	2.8	96
100	Differential distribution of theMeCP2 splice variants in the postnatal mouse brain. Journal of Comparative Neurology, 2007, 501, 526-542.	0.9	85
101	Dosage compensation is less effective in birds than in mammals. Journal of Biology, 2007, 6, 2.	2.7	304
102	Sex chromosome complement regulates habit formation. Nature Neuroscience, 2007, 10, 1398-1400.	7.1	138
103	Biologische Grundlagen von Geschlechtsunterschieden. , 2007, , 19-39.		2
104	Expression of NGF and trkA mRNA in song control and other regions of the zebra finch brain. Neuroscience Letters, 2006, 409, 151-156.	1.0	7
105	Utilization of a zebra finch BAC library to determine the structure of an avian androgen receptor genomic region. Genomics, 2006, 87, 181-190.	1.3	25
106	Comparison of the chicken and zebra finch Z chromosomes shows evolutionary rearrangements. Chromosome Research, 2006, 14, 805-815.	1.0	61
107	The distribution of expression of doublecortin (DCX) mRNA and protein in the zebra finch brain. Brain Research, 2006, 1106, 189-196.	1.1	27
108	Sexually dimorphic expression of the X-linked gene Eif2s3x mRNA but not protein in mouse brain. Gene Expression Patterns, 2006, 6, 146-155.	0.3	56

#	Article	IF	CITATIONS
109	Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Research, 2006, 16, 995-1004.	2.4	785
110	Sex Chromosome Complement and Gonadal Sex Influence Aggressive and Parental Behaviors in Mice. Journal of Neuroscience, 2006, 26, 2335-2342.	1.7	220
111	Distribution and onset of retinaldehyde dehydrogenase (zRalDH) expression in zebra finch brain: Lack of sex difference in HVC and RA at early posthatch ages. Journal of Neurobiology, 2005, 65, 260-268.	3.7	16
112	Spatially and temporally specific expression in mouse hippocampus of Usp9x, a ubiquitin-specific protease involved in synaptic development. Journal of Neuroscience Research, 2005, 80, 47-55.	1.3	28
113	Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Research, 2005, 13, 47-56.	1.0	94
114	Sexually Dimorphic Expression of Co-Repressor Sin3A in Mouse Kidneys. Endocrine Research, 2005, 31, 111-119.	0.6	3
115	A Yin-Yang Effect between Sex Chromosome Complement and Sex Hormones on the Immune Response. Endocrinology, 2005, 146, 3280-3285.	1.4	129
116	Strategies and Methods for Research on Sex Differences in Brain and Behavior. Endocrinology, 2005, 146, 1650-1673.	1.4	679
117	Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7730-7735.	3.3	63
118	Neonatal Mice Possessing an Sry Transgene Show a Masculinized Pattern of Progesterone Receptor Expression in the Brain Independent of Sex Chromosome Status. Endocrinology, 2004, 145, 1046-1049.	1.4	51
119	Sex Differences in Structure and Expression of the Sex Chromosome Genes CHD1Z and CHD1W in Zebra Finches. Molecular Biology and Evolution, 2004, 21, 384-396.	3.5	40
120	Sex chromosomes and brain gender. Nature Reviews Neuroscience, 2004, 5, 701-708.	4.9	331
121	Sexual Differentiation of the Zebra Finch Song System. Annals of the New York Academy of Sciences, 2004, 1016, 540-559.	1.8	163
122	Expression of androgen receptor mRNA in zebra finch song system: Developmental regulation by estrogen. Journal of Comparative Neurology, 2004, 469, 535-547.	0.9	96
123	A cDNA microarray from the telencephalon of juvenile male and female zebra finches. Journal of Neuroscience Methods, 2004, 138, 199-206.	1.3	42
124	Hormonal and Nonhormonal Mechanisms of Sexual Differentiation of the Brain. , 2004, , 84-95.		3
125	Minireview: Sex Chromosomes and Brain Sexual Differentiation. Endocrinology, 2004, 145, 1057-1062.	1.4	134
126	Are XX and XY brain cells intrinsically different?. Trends in Endocrinology and Metabolism, 2004, 15, 6-11.	3.1	153

8

#	Article	IF	CITATIONS
127	Two Perspectives on the Origin of Sex Differences in the Brain. Annals of the New York Academy of Sciences, 2003, 1007, 176-188.	1.8	67
128	The gender of the voice within: the neural origin of sex differences in the brain. Current Opinion in Neurobiology, 2003, 13, 759-764.	2.0	20
129	Expression of androgen receptor mRNA in the late embryonic and early posthatch zebra finch brain. Journal of Comparative Neurology, 2003, 455, 513-530.	0.9	56
130	Expression of estrogen receptor and aromatase mRNAs in embryonic and posthatch zebra finch brain. Journal of Neurobiology, 2003, 55, 204-219.	3.7	50
131	Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4873-4878.	3.3	230
132	Cloning and Expression of Zebra Finch (Taeniopygia guttata) Steroidogenic Factor 1: Overlap with Hypothalamic but Not with Telencephalic Aromatase1. Biology of Reproduction, 2002, 66, 1127-1133.	1.2	18
133	Concepts of Genetic and Hormonal Induction of Vertebrate Sexual Differentiation in the Twentieth Century, with Special Reference to the Brain. , 2002, , 105-135.		42
134	Sex differences in sex chromosome gene expression in mouse brain. Human Molecular Genetics, 2002, 11, 1409-1419.	1.4	237
135	Antiandrogen blocks estrogen-induced masculinization of the song system in female zebra finches. Journal of Neurobiology, 2002, 51, 1-8.	3.7	33
136	Sex chromosome genes directly affect brain sexual differentiation. Nature Neuroscience, 2002, 5, 933-934.	7.1	275
137	A Model System for Study of Sex Chromosome Effects on Sexually Dimorphic Neural and Behavioral Traits. Journal of Neuroscience, 2002, 22, 9005-9014.	1.7	458
138	Primate DAX1, SRY, and SOX9: Evolutionary Stratification of Sex-Determination Pathway. American Journal of Human Genetics, 2001, 68, 275-280.	2.6	21
139	Distribution and regulation of telencephalic aromatase expression in the zebra finch revealed with a specific antibody. Journal of Comparative Neurology, 2000, 423, 619-630.	0.9	232
140	Interaction of BDNF and testosterone in the regulation of adult perineal motoneurons. Journal of Neurobiology, 2000, 44, 308-319.	3.7	45
141	BDNF regulation of androgen receptor expression in axotomized SNB motoneurons of adult male rats. Brain Research, 2000, 852, 127-139.	1.1	25
142	Effects of Embryonic Treatment with Fadrozole on Phenotype of Gonads, Syrinx, and Neural Song System in Zebra Finches. General and Comparative Endocrinology, 1999, 115, 346-353.	0.8	32
143	Zebra finch aromatase gene expression is regulated in the brain through an alternate promoter. Gene, 1999, 240, 209-216.	1.0	46
144	Developmental Regulation of the Distribution of Aromatase- and Estrogen-Receptor- mRNA-Expressing Cells in the Zebra Finch Brain. Developmental Neuroscience, 1999, 21, 453-472.	1.0	92

#	Article	IF	CITATIONS
145	DEVELOPMENTAL PLASTICITY IN NEURAL CIRCUITS FOR A LEARNED BEHAVIOR. Annual Review of Neuroscience, 1997, 20, 459-481.	5.0	94
146	Song Lateralization in the Zebra Finch. Hormones and Behavior, 1997, 31, 25-34.	1.0	48
147	Experimental Analysis of Sexual Differentiation of the Zebra Finch Brain. Brain Research Bulletin, 1997, 44, 503-507.	1.4	16
148	A putative 5α-reductase inhibitor demasculinizes portions of the zebra finch song system. Brain Research, 1997, 750, 122-128.	1.1	19
149	Ontogeny of androgen receptor immunoreactivity in lumbar motoneurons and in the sexually dimorphic levator ani muscle of male rats. Journal of Comparative Neurology, 1997, 379, 88-98.	0.9	72
150	Effects of embryonic estrogen on differentiation of the gonads and secondary sexual characteristics of male zebra finches. , 1997, 278, 405-411.		43
151	Sexual differentiation of the zebra finch song system: Positive evidence, negative evidence, null hypotheses, and a paradigm shift. Journal of Neurobiology, 1997, 33, 572-584.	3.7	124
152	Zebra finch estrogen receptor cDNA: Cloning and mRNA expression. Journal of Steroid Biochemistry and Molecular Biology, 1996, 59, 135-145.	1.2	62
153	Genetically Triggered Sexual Differentiation of Brain and Behavior. Hormones and Behavior, 1996, 30, 495-505.	1.0	138
154	Sexual Differentiation of the Brain in Songbirds. Developmental Neuroscience, 1996, 18, 124-136.	1.0	49
155	3β-Hydroxysteroid Dehydrogenase/Isomerase and Aromatase Activity in Primary Cultures of Developing Zebra Finch Telencephalon: Dehydroepiandrosterone as Substrate for Synthesis of Androstenedione and Estrogens. General and Comparative Endocrinology, 1996, 102, 342-350.	0.8	111
156	Steroid accumulation in song nuclei of a sexually dimorphic duetting bird, the rufous and white wren. , 1996, 31, 235-244.		18
157	Neither Testicular Androgens nor Embryonic Aromatase Activity Alters Morphology of the Neural Song System in Zebra Finches1. Biology of Reproduction, 1996, 55, 1126-1132.	1.2	63
158	A direct comparison of the masculinizing effects of testosterone, androstenedione, estrogen, and progesterone on the development of the zebra finch song system. Journal of Neurobiology, 1995, 26, 163-170.	3.7	87
159	Axotomy of developing rat spinal motoneurons: Cell survival, soma size, muscle recovery, and the influence of testosterone. Journal of Neurobiology, 1995, 26, 225-240.	3.7	20
160	Aromatase and 5?-reductase activity in cultures of developing zebra finch brain: An investigation of sex and regional differences. Journal of Neurobiology, 1995, 27, 240-251.	3.7	52
161	Lack of a synergistic effect between estradiol and dihydrotestosterone in the masculinization of the zebra finch song system. Journal of Neurobiology, 1995, 27, 513-519.	3.7	53
162	Importance of target innervation in recovery from axotomy-induced loss of androgen receptor in rat perineal motoneurons. Journal of Neurobiology, 1995, 28, 341-353.	3.7	26

#	Article	IF	CITATIONS
163	5?-Reductase and other Androgen-Metabolizing Enzymes in Primary Cultures of Developing Zebra Finch Telencephalon. Journal of Neuroendocrinology, 1995, 7, 187-192.	1.2	33
164	Axotomy transiently down-regulates androgen receptors in motoneurons of the spinal nucleus of the bulbocavernosus. Brain Research, 1995, 694, 61-68.	1.1	31
165	Estrogen synthesis and secretion by the songbird brain. , 1995, , 297-323.		8
166	Evidence for Target Regulations of the Development of Androgen Sensitivity in Rat Spinal Motoneurons. Developmental Neuroscience, 1995, 17, 106-117.	1.0	30
167	Specificity of Androgenic Regulation of Input to Sexually Dimorphic Motoneurons in Male Rat Lumbar Spinal Cord. Experimental Neurology, 1995, 136, 258-260.	2.0	3
168	Androgenic, not estrogenic, steroids alter neuromuscular synapse elimination in the rat levator ani. Developmental Brain Research, 1995, 84, 225-232.	2.1	18
169	Local intracerebral implants of estrogen masculinize some aspects of the zebra finch song system. Journal of Neurobiology, 1994, 25, 185-196.	3.7	52
170	Fadrozole: A Potent and Specific Inhibitor of Aromatase in the Zebra Finch Brain. General and Comparative Endocrinology, 1994, 94, 53-61.	0.8	116
171	Distribution of GABA-like immunoreactivity in the song system of the zebra finch. Brain Research, 1994, 651, 115-122.	1.1	50
172	Post-hatching inhibition of aromatase activity does not alter sexual differentiation of the zebra finch song system. Brain Research, 1994, 639, 347-350.	1.1	72
173	Androgenic modulation of the activity of lumbar neurons involved in the rat bulbocavernosus reflex. Experimental Brain Research, 1993, 94, 301-7.	0.7	14
174	An electrophysiological study of descending projections to the lumbar spinal cord in adult male rats. Experimental Brain Research, 1993, 96, 117-124.	0.7	17
175	Sexual Differentiation of Brain and Behavior: The Zebra Finch is not Just a Flying Rat. Brain, Behavior and Evolution, 1993, 42, 231-241.	0.9	68
176	Plasma Estrogens and Brain Aromatase in Winter White-Crowned Sparrows. Ornis Scandinavica, 1992, 23, 292.	1.0	39
177	Hormonally-induced alterations in synaptic organization in the adult nervous system. Experimental Gerontology, 1992, 27, 99-110.	1.2	13
178	Transient and permanent effects of androgen during synapse elimination in the levator ani muscle of the rat. Journal of Neurobiology, 1992, 23, 1-9.	3.7	31
179	Hormone accumulation in song regions of the canary brain. Journal of Neurobiology, 1992, 23, 871-880.	3.7	44
180	Developmental plasticity in neural circuits controlling birdsong: Sexual differentiation and the neural basis of learning. Journal of Neurobiology, 1992, 23, 1506-1528.	3.7	100

#	Article	IF	CITATIONS
181	Tamoxifen fails to block estradiol accumulation, yet is weakly accumulated by the juvenile zebra finch anterior hypothalamus: An autoradiographic study. Journal of Neurobiology, 1991, 22, 970-975.	3.7	15
182	Androgen effects on the development of the zebra finch song system. Brain Research, 1991, 561, 99-105.	1.1	60
183	Lesions of HVc block the developmental masculinizing effects of estradiol in the female zebra finch song system. Journal of Neurobiology, 1991, 22, 29-39.	3.7	69
184	Sexually dimorphic, androgen sensitive, enkephalinergic afferents to a lumbar motor nucleus of rats. Journal of Neurobiology, 1991, 22, 873-881.	3.7	2
185	Tamoxifen's effects on the zebra finch song system are estrogenic, not antiestrogenic. Journal of Neurobiology, 1991, 22, 957-969.	3.7	45
186	Androgenic regulation of dendritic trees of motoneurons in the spinal nucleus of the bulbocavernosus: Reconstruction after intracellular iontophoresis of horseradish peroxidase. Journal of Comparative Neurology, 1991, 308, 11-27.	0.9	55
187	Ontogeny of steroid accumulation in spinal lumbar motoneurons of the rat: Implications for androgen's site of action during synapse elimination. Journal of Comparative Neurology, 1991, 313, 441-448.	0.9	60
188	Antiestrogens fail to prevent the masculine ontogeny of the zebra finch song system. General and Comparative Endocrinology, 1990, 80, 48-58.	0.8	64
189	Autoradiographic localization of progestin-concentrating cells in the brain of the zebra finch. Journal of Comparative Neurology, 1990, 291, 450-456.	0.9	18
190	Supraspinal projections to the ventromedial lumbar spinal cord in adult male rats. Journal of Comparative Neurology, 1990, 300, 263-272.	0.9	51
191	The passerine bird song system as a model in neuroendocrine research. The Journal of Experimental Zoology, 1990, 256, 22-30.	1.4	25
192	Critical period for the androgenic block of neuromuscular synapse elimination. Journal of Neurobiology, 1990, 21, 760-767.	3.7	18
193	The effects of systemic androgen treatment on androgen accumulation in song control regions of the adult female canary brain. Journal of Neurobiology, 1990, 21, 837-843.	3.7	35
194	Critical period for androgenic regulation of soma size of sexually dimorphic motoneurons in rat lumbar spinal cord. Neuroscience Letters, 1989, 98, 79-84.	1.0	31
195	Gap junctions between lateral spinal motoneurons in the rat. Brain Research, 1989, 495, 362-366.	1.1	38
196	Accumulation of estrogen in a vocal control brain region of a duetting song bird. Brain Research, 1989, 480, 119-125.	1.1	42
197	Synapse elimination occurs late in the hormone-sensitive levator ani muscle of the rat. Journal of Neurobiology, 1988, 19, 335-356.	3.7	40
198	Steroid autoradiography of the sexually dimorphic nucleus of the preoptic area. Brain Research, 1987, 414, 349-356.	1.1	31

#	Article	IF	CITATIONS
199	Sexual differentiation of androgen accumulation within the zebra finch brain through selective cell loss and addition. Journal of Comparative Neurology, 1987, 259, 393-399.	0.9	99
200	Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters, 1986, 67, 263-268.	1.0	104
201	Sexual Dimorphisms in the Neural Vocal Control System in Song Birds: Ontogeny and Phylogeny. Brain, Behavior and Evolution, 1986, 28, 22-31.	0.9	70
202	Auditory and hormonal stimulation interact to produce neural growth in adult canaries. Journal of Neurobiology, 1986, 17, 605-612.	3.7	37
203	Immunohistochemical distribution of substance P, serotonin, and methionine enkephalin in sexually dimorphic nuclei of the rat lumbar spinal cord. Journal of Comparative Neurology, 1986, 248, 235-244.	0.9	67
204	The Ontogeny of Vocal Learning in Songbirds. Handbook of Behavioral Neurobiology, 1986, , 129-161.	0.3	23
205	Neural correlates of female song in tropical duetting birds. Brain Research, 1985, 343, 104-112.	1.1	132
206	Lack of sexual dimorphism in steroid accumulation in vocal control brain regions of duetting song birds. Brain Research, 1985, 344, 172-175.	1.1	40
207	Cerebral Lateralization in Birds. , 1985, , 11-39.		25
208	Hormones and structural plasticity in the adult brain. Trends in Neurosciences, 1984, 7, 168-171.	4.2	17
209	Androgen regulation of motor neuron size and number. Trends in Neurosciences, 1984, 7, 239-242.	4.2	16
210	Sexual dimorphism and lack of seasonal changes in vocal control regions of the white-crowned sparrow brain. Brain Research, 1984, 295, 85-89.	1.1	90
211	Sex differences in the pattern of steroidaccumulation by motoneurons of the rat lumbar spinal cord. Journal of Comparative Neurology, 1983, 215, 211-216.	0.9	114
212	Neurogenesis of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus in rats. Developmental Brain Research, 1983, 9, 39-43.	2.1	50
213	Neural Control of Passerine Song. , 1982, , 75-94.		18
214	Sexual dimorphism and the influence of neonatal androgen in the dorsolateral motor nucleus of the rat lumbar spinal cord. Brain Research, 1982, 249, 309-314.	1.1	170
215	Masculinization of the female rat spinal cord following a single neonatal injection of testosterone propionate but not estradiol benzoate. Brain Research, 1982, 237, 173-181.	1.1	104
216	Afferent neurons in the hypoglossal nerve of the zebra finch(Poephila guttata): Localization with horseradish peroxidase. Journal of Comparative Neurology, 1982, 210, 190-197.	0.9	56

#	Article	IF	CITATIONS
217	Enkephalin-like immunoreactivity in vocal control regions of the zebra finch brain. Brain Research, 1981, 229, 236-240.	1.1	50
218	Sexually dimorphic motor nucleus in the rat lumbar spinal cord: Response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Research, 1981, 225, 297-307.	1.1	391
219	Model systems for the study of sexual differentiation of the nervous system. Trends in Pharmacological Sciences, 1981, 2, 148-149.	4.0	3
220	Evidence for a catecholaminergic projection to area X in the zebra finch. Journal of Comparative Neurology, 1981, 196, 347-354.	0.9	196
221	Evidence for cholinergic participation in the control of bird song: Acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain. Journal of Comparative Neurology, 1981, 202, 211-219.	0.9	99
222	Logical Levels of Steroid Hormone Action in the Control of Vertebrate Behavior. American Zoologist, 1981, 21, 233-242.	0.7	33
223	Quantitative Analysis of Steroid Autoradiograms,. Journal of Histochemistry and Cytochemistry, 1981, 29, 207-211.	1.3	53
224	Quantitative analysis of sex differences in hormone accumulation in the zebra finch brain: Methodological and theoretical issues. Journal of Comparative Neurology, 1980, 189, 421-436.	0.9	139
225	Effects of androgens on volumes of sexually dimorphic brain regions in the zebra finch. Brain Research, 1980, 185, 441-444.	1.1	81
226	A technique for simultaneous steroid autoradiography and retrograde labelling of neurons. Brain Research, 1980, 194, 210-212.	1.1	17
227	Hormone concentrating cells in vocal control and other areas of the brain of the zebra finch (Poephila guttata). Journal of Comparative Neurology, 1976, 165, 487-511.	0.9	380
228	The effects of castration on song development in zebra finches (Poephila guttata). The Journal of Experimental Zoology, 1975, 191, 261-277.	1.4	167
229	The effects of castration and androgen replacement on song, courtship, and aggression in zebra finches (Poephila guttata). The Journal of Experimental Zoology, 1975, 191, 309-325.	1.4	267
230	Noxious effects of excessive currents used for intracortical microstimulation. Brain Research, 1975, 96, 103-107.	1.1	89