
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7137105/publications.pdf Version: 2024-02-01

ΖΗΕΝΟ-ΚΙΙΝ ΥΠ

#	Article	IF	CITATIONS
1	Ru(dppbsa)-catalyzed hydrodeoxygenation and reductive etherification of ketones and aldehydes. Organic Chemistry Frontiers, 2022, 9, 1943-1954.	4.5	4
2	Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds. Chemical Society Reviews, 2022, 51, 2759-2852.	38.1	120
3	Copper-Catalyzed [4 + 1] Annulation of Enaminothiones with Indoline-Based Diazo Compounds. Journal of Organic Chemistry, 2022, 87, 4424-4437.	3.2	6
4	Visible-Light-Driven, Palladium-Catalyzed Heck Reaction of Internal Vinyl Bromides with Styrenes. Journal of Organic Chemistry, 2021, 86, 8402-8413.	3.2	4
5	Cobalt-Catalyzed Chemoselective Transfer Hydrogenative Cyclization Cascade of Enone-Tethered Aldehydes. Organic Letters, 2021, 23, 3873-3878.	4.6	7
6	Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells. Science of the Total Environment, 2021, 772, 144957.	8.0	12
7	Palladium-Catalyzed Fluoroalkylation via C(sp ³)–S Bond Cleavage of Vinylsulfonium Salts. Organic Letters, 2021, 23, 6110-6114.	4.6	16
8	Ruthenium-catalysed chemoselective alkylation of nitroarenes with alkanols. Organic Chemistry Frontiers, 2021, 8, 6710-6719.	4.5	8
9	Copper-Catalyzed Annulative Coupling of S,S-Disubstituted Enones with Diazo Compounds to Access Highly Functionalized Thiophene Derivatives. Journal of Organic Chemistry, 2020, 85, 1044-1053.	3.2	16
10	Assembled Multinuclear Ruthenium(II)–NNNN Complexes: Synthesis, Catalytic Properties, and DFT Calculations. Organometallics, 2020, 39, 93-104.	2.3	9
11	Copper(II)-Catalyzed C–H Nitrogenation/Annulation Cascade of Ketene <i>N</i> , <i>S</i> -Acetals with Aryldiazonium Salts: A Direct Access to <i>N</i> ² -Substituted Triazole and Triazine Derivatives. Organic Letters, 2020, 22, 310-315.	4.6	30
12	Transition-metal mediated carbon–sulfur bond activation and transformations: an update. Chemical Society Reviews, 2020, 49, 4307-4359.	38.1	197
13	Photoinduced, Copper-Catalyzed Three-Component Annulation of <i>gem</i> -Dialkylthio Enynes. Organic Letters, 2020, 22, 5202-5206.	4.6	26
14	Copper(II)-Mediated Intramolecular Cyclopropanation of Ketene <i>N</i> , <i>X</i> -Acetals (X = S, O, N) under Mild Conditions. Journal of Organic Chemistry, 2020, 85, 4373-4385.	3.2	8
15	ZnCl ₂ atalyzed [4+1] Annulation of Alkylthio‧ubstituted Enaminones and Enaminothiones with Sulfur Ylides. Chemistry - A European Journal, 2020, 26, 4941-4946.	3.3	19
16	Rhodium(III)-Catalyzed Annulative Coupling of Sulfoxonium Ylides and Allenoates: An Arene C–H Activation/Cyclopropanation Cascade. Organic Letters, 2019, 21, 9217-9222.	4.6	53
17	Highly Regioselective C–H Alkylation of Alkenes Through an Aryl to Vinyl 1,4-Palladium Migration/C–C Cleavage Cascade. ACS Catalysis, 2019, 9, 11669-11675.	11.2	51
18	Rhodium(III)-Catalyzed Annulation of Acetophenone <i>O</i> -Acetyl Oximes with Allenoates through Arene C–H Activation: An Access to Isoquinolines. Journal of Organic Chemistry, 2019, 84, 2083-2092.	3.2	23

#	Article	IF	CITATIONS
19	Potassium <i>tert</i> â€Butoxideâ€Promoted Acceptorless Dehydrogenation of Nâ€Heterocycles. Advanced Synthesis and Catalysis, 2019, 361, 3958-3964.	4.3	40
20	Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor α (PPARα). Ecotoxicology and Environmental Safety, 2019, 181, 164-171.	6.0	30
21	Transitionâ€Metalâ€Promoted Direct Câ^'H Cyanoalkylation and Cyanoalkoxylation of Internal Alkenes via Radical Câ^'C Bond Cleavage of Cycloketone Oxime Esters. Advanced Synthesis and Catalysis, 2019, 361, 3787-3799.	4.3	25
22	Copper-Catalyzed Radical C–C Bond Cleavage and [4+1] Annulation Cascade of Cycloketone Oxime Esters with Enaminothiones. Journal of Organic Chemistry, 2019, 84, 2178-2190.	3.2	38
23	Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides. Journal of Organic Chemistry, 2018, 83, 5731-5750.	3.2	23
24	Acceptorless Dehydrogenation of <i>N</i> -Heterocycles and Secondary Alcohols by Ru(II)-NNC Complexes Bearing a Pyrazoyl-indolyl-pyridine Ligand. Organometallics, 2018, 37, 584-591.	2.3	68
25	A Simple Aliphatic Diamine Auxiliary for Palladiumâ€Catalyzed Arylation of Unactivated <i>β</i> â€C(<i>sp</i> ³)â€H Bonds. Advanced Synthesis and Catalysis, 2018, 360, 4571-4584.	4.3	14
26	Palladium-Catalyzed C–S Bond Cleavage with Allenoates: Synthesis of Tetrasubstituted 2-Alkenylfuran Derivatives. Organic Letters, 2018, 20, 6007-6011.	4.6	24
27	[4+1] Cycloaddition of Enaminothiones and Aldehyde <i>N</i> â€Tosylhydrazones Toward 3â€Aminothiophenes. Advanced Synthesis and Catalysis, 2018, 360, 4381-4392.	4.3	15
28	α,β-Unsaturated <i>N</i> -Acylindoles: An Alternative Class of Michael Acceptors and Their Application in Asymmetric Borylation. Journal of Organic Chemistry, 2018, 83, 7981-7993.	3.2	11
29	Manganese-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols under Phosphine-Free Conditions. ACS Catalysis, 2018, 8, 7201-7207.	11.2	150
30	PIDAâ€Mediated Formal Olefinic C=C Bond Cleavage of αâ€Oxoâ€Ketene <i>N</i> , <i>N</i> â€Acetals toward Substituted Oxazolines. Chemistry - A European Journal, 2018, 24, 14368-14372.	3.3	9
31	Metalâ€Free C <i>sp</i> â^C <i>sp</i> and C <i>sp</i> â^C <i>sp</i> ³ Bond Cleavages of <i>N,S</i> â€Enynes toward Thiopheneâ€Fused <i>N</i> â€Heterocycles. Advanced Synthesis and Catalysis, 2018, 360, 3097-3108.	4.3	19
32	Copper-Catalyzed Asymmetric Borylation: Construction of a Stereogenic Carbon Center Bearing Both CF ₃ and Organoboron Functional Groups. Journal of Organic Chemistry, 2017, 82, 1951-1960.	3.2	41
33	Iron-Catalyzed Oxidative C–H Functionalization of Internal Olefins for the Synthesis of Tetrasubstituted Furans. Organic Letters, 2017, 19, 3287-3290.	4.6	61
34	Copper-promoted direct C–H alkoxylation of S,S-functionalized internal olefins with alcohols. Organic and Biomolecular Chemistry, 2017, 15, 5535-5540.	2.8	25
35	Copper-Catalyzed Formal Carbene Migratory Insertion into Internal Olefinic Câ•€ Bonds with <i>N</i> -Tosylhydrazones To Access Iminofuran and 2(3 <i>H</i>)-Furanone Derivatives. Organic Letters, 2017, 19, 3660-3663.	4.6	45
36	Photoredox-Catalyzed C–H Arylation of Internal Alkenes to Tetrasubstituted Alkenes: Synthesis of Tamoxifen. Organic Letters, 2017, 19, 6248-6251.	4.6	32

#	Article	IF	CITATIONS
37	Cooperative N–H and CH ₂ Skeleton Effects on the Catalytic Activities of Bimetallic Ru(II)–NNN Complexes: Experimental and Theoretical Study. Organometallics, 2017, 36, 4268-4277.	2.3	7
38	NHTs Effect on the Enantioselectivity of Ru(II) Complex Catalysts Bearing a Chiral Bis(NHTs)-Substituted Imidazolyl-Oxazolinyl-Pyridine Ligand for Asymmetric Transfer Hydrogenation of Ketones. Organometallics, 2017, 36, 4136-4144.	2.3	23
39	Dimeric Ruthenium(II)-NNN Complex Catalysts Bearing a Pyrazolyl-Pyridylamino-Pyridine Ligand for Transfer Hydrogenation of Ketones and Acceptorless Dehydrogenation of Alcohols. Organometallics, 2017, 36, 3638-3644.	2.3	34
40	Iron-Promoted Difunctionalization of Alkenes by Phenylselenylation/1,2-Aryl Migration. Organic Letters, 2017, 19, 5450-5453.	4.6	39
41	Ironâ€Mediated Oxidative C–H Alkylation of <i>S,S</i> â€Functionalized Internal Olefins <i>via</i> C(<i>sp</i> ²)–H/C(<i>sp</i> ³)–H Crossâ€Coupling. Advanced Synthesis and Catalysis, 2017, 359, 2981-2998.	4.3	39
42	A Versatile Ru(II)-NNP Complex Catalyst for the Synthesis of Multisubstituted Pyrroles and Pyridines. Organometallics, 2017, 36, 4936-4942.	2.3	37
43	Exceptionally Active Assembled Dinuclear Ruthenium(II)-NNN Complex Catalysts for Transfer Hydrogenation of Ketones. Organometallics, 2017, 36, 2914-2921.	2.3	35
44	Câ€Alkylation of Ketones and Related Compounds by Alcohols: Transitionâ€Metalâ€Catalyzed Dehydrogenation. Angewandte Chemie - International Edition, 2016, 55, 862-875.	13.8	379
45	Quantification of Short-Chain Chlorinated Paraffins by Deuterodechlorination Combined with Gas Chromatography–Mass Spectrometry. Environmental Science & Technology, 2016, 50, 3746-3753.	10.0	36
46	Ruthenium(III)-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics, 2016, 35, 1251-1256.	2.3	86
47	Diruthenium(<scp>ii</scp>)–NNN pincer complex catalysts for transfer hydrogenation of ketones. Dalton Transactions, 2016, 45, 17843-17849.	3.3	31
48	Copperâ€Catalyzed Ringâ€Expansion/Thiolactonization <i>via</i> Azidation of Internal Olefinic C–H Bond under Mild Conditions. Advanced Synthesis and Catalysis, 2016, 358, 3450-3457.	4.3	15
49	Rhodium(<scp>iii</scp>)-catalyzed sp ² C–H bond addition to CF ₃ -substituted unsaturated ketones. Chemical Communications, 2016, 52, 2913-2915.	4.1	44
50	Palladiumâ€Catalyzed Oxidative Crossâ€Coupling of α yanoketene Dithioacetals with Olefins. Chemistry - A European Journal, 2015, 21, 14085-14094.	3.3	23
51	BrÃ,nsted Acidâ€Promoted Cascade Alkylation/Cyclization of Pyrroles with <i>N</i> , <i>N</i> â€Dimethylaminomethyleneglutaconic Acid Dinitrile: A Concise Route to Cyclopenta[<i>b</i>]pyrroles. Advanced Synthesis and Catalysis, 2015, 357, 3353-3358.	4.3	11
52	BrÃ,nsted Acidâ€Mediated Annulation of αâ€Oxo Ketene Dithioacetals with Pyrroles: Efficient Synthesis of Structurally Diverse Cyclopenta[<i>b</i>]pyrroles. Chemistry - A European Journal, 2015, 21, 9323-9327.	3.3	11
53	Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 2015, 44, 2305-2329.	38.1	591
54	BrÃ,nsted Acid Catalyzed PhSe Transfer versus Radical Aryl Transfer: Linear Codimerization of Styrenes and Internal Olefins. Organic Letters, 2015, 17, 868-871.	4.6	19

#	Article	IF	CITATIONS
55	Copperâ€Catalyzed Tandem Asymmetric Borylation of βâ€Chloroalkyl Aryl Ketones and Related Compounds. ChemCatChem, 2015, 7, 660-665.	3.7	10
56	Substituent Effect on the Catalytic Activity of Ruthenium(II) Complexes Bearing a Pyridyl-Supported Pyrazolyl-Imidazolyl Ligand for Transfer Hydrogenation of Ketones. Organometallics, 2015, 34, 5278-5284.	2.3	45
57	Palladium-catalyzed oxidative annulation of in situ generated enones to pyrroles: a concise route to functionalized indoles. Organic Chemistry Frontiers, 2015, 2, 1361-1365.	4.5	15
58	Copperâ€Catalyzed Trifluoromethylation of Internal Olefinic CH Bonds: Efficient Routes to Trifluoromethylated Tetrasubstituted Olefins and Nâ€Heterocycles. Chemistry - A European Journal, 2014, 20, 3439-3445.	3.3	63
59	Ruthenium Complex Catalysts Supported by a Bis(trifluoromethyl)pyrazolyl–Pyridyl-Based NNN Ligand for Transfer Hydrogenation of Ketones. Organometallics, 2014, 33, 974-982.	2.3	63
60	Tunable BrÃnsted Acidityâ€Dependent Alkylation and Alkenylation of Indoles. Advanced Synthesis and Catalysis, 2014, 356, 3871-3880.	4.3	11
61	Palladium-catalyzed, copper-mediated construction of benzene rings from the reactions of indoles with in situ generated enones. Organic Chemistry Frontiers, 2014, 1, 707-711.	4.5	48
62	Iron-catalyzed alkylation of $\hat{l}\pm$ -oxo ketene dithioacetals. Chemical Communications, 2014, 50, 6337-6339.	4.1	30
63	Copper-Mediated Intramolecular Oxidative C–H/C–H Cross-Coupling of α-Oxo Ketene N,S-Acetals for Indole Synthesis. Journal of Organic Chemistry, 2014, 79, 10553-10560.	3.2	54
64	Copper-mediated intramolecular oxidative C–H/N–H cross-coupling of α-alkenoyl ketene N,S-acetals to synthesize pyrrolone derivatives. Chemical Communications, 2014, 50, 12479-12481.	4.1	35
65	Palladiumâ€Catalyzed Oxidative Heckâ€Type Allylation of β,βâ€Disubstituted Enones with Allyl Carbonates. Advanced Synthesis and Catalysis, 2014, 356, 2097-2102.	4.3	23
66	Ru(II) pyridyl-based NNN complex catalysts for (asymmetric) transfer hydrogenation of ketones at room temperature. Chinese Journal of Catalysis, 2013, 34, 1373-1377.	14.0	16
67	Transition-metal mediated carbon–sulfur bond activation and transformations. Chemical Society Reviews, 2013, 42, 599-621.	38.1	492
68	Ruthenium(II) Complex Catalysts Bearing a Pyridyl-Based Benzimidazolyl–Benzotriazolyl Ligand for Transfer Hydrogenation of Ketones. Organometallics, 2013, 32, 3083-3090.	2.3	68
69	Rhodium(I) atalyzed Arylation of β hloro Ketones and Related Derivatives through Domino Dehydrochlorination/ Conjugate Addition. Advanced Synthesis and Catalysis, 2013, 355, 1874-1880.	4.3	26
70	Biomimetic in situ Regeneration of Cofactors NAD(P)+ and NAD(P)H Models Hantzsch Esters and Dihydrophenanthridine. Synlett, 2012, 23, 1300-1304.	1.8	7
71	A Highly Active Ruthenium(II) Pyrazolyl–Pyridyl–Pyrazole Complex Catalyst for Transfer Hydrogenation of Ketones. Organometallics, 2012, 31, 5664-5667.	2.3	61
72	A Versatile Ruthenium(II)–NNC Complex Catalyst for Transfer Hydrogenation of Ketones and Oppenauerâ€Type Oxidation of Alcohols. Chemistry - A European Journal, 2012, 18, 11550-11554.	3.3	65

#	Article	IF	CITATIONS
73	BrÃ,nsted Acid Activation Strategy in Transitionâ€Metal Catalyzed Asymmetric Hydrogenation of Nâ€Unprotected Imines, Enamines, and N <i>â€</i> Heteroaromatic Compounds. Angewandte Chemie - International Edition, 2012, 51, 6060-6072.	13.8	189
74	Ruthenium(II) Pyrazolyl–Pyridyl–Oxazolinyl Complex Catalysts for the Asymmetric Transfer Hydrogenation of Ketones. Chemistry - A European Journal, 2012, 18, 10843-10846.	3.3	69
75	Regio- and Stereoselective Synthesis of Multisubstituted Olefins and Conjugate Dienes by Using α-Oxo Ketene Dithioacetals as the Building Blocks. Organic Letters, 2011, 13, 4272-4275.	4.6	65
76	Highly Active Ruthenium(II) Complex Catalysts Bearing an Unsymmetrical NNN Ligand in the (Asymmetric) Transfer Hydrogenation of Ketones. Chemistry - A European Journal, 2011, 17, 4737-4741.	3.3	85
77	RuCl ₃ â< <i>x</i> H ₂ Oâ€Catalyzed Direct Arylation of Arenes with Aryl Chlorides in the Presence of Triphenylphosphine. Chemistry - A European Journal, 2010, 16, 787-791.	¹ 3.3	57
78	Palladiumâ€Catalyzed Crossâ€Coupling of Internal Alkenes with Terminal Alkenes to Functionalized 1,3â€Butadienes Using Cī£¿H Bond Activation: Efficient Synthesis of Bicyclic Pyridones. Angewandte Chemie - International Edition, 2010, 49, 5792-5797.	13.8	165
79	Direct Alkenylation of Indoles with αâ€Oxo Ketene Dithioacetals: Efficient Synthesis of Indole Alkaloids Meridianin Derivatives. Angewandte Chemie - International Edition, 2009, 48, 2929-2933.	13.8	104
80	Room-temperature Ru(II)-catalyzed transfer hydrogenation of ketones and aldehydes in air. Tetrahedron Letters, 2009, 50, 4624-4628.	1.4	57
81	Efficient Rh(I)-Catalyzed Direct Arylation and Alkenylation of Arene Câ^'H Bonds via Decarbonylation of Benzoic and Cinnamic Anhydrides. Organic Letters, 2009, 11, 1317-1320.	4.6	120
82	Construction of Highly Active Ruthenium(II) NNN Complex Catalysts Bearing a Pyridyl-Supported Pyrazolyl-Imidazolyl Ligand for Transfer Hydrogenation of Ketones. Organometallics, 2009, 28, 1855-1862.	2.3	83
83	Ruthenium(II) Complexes Bearing a Pyridyl-Supported Pyrazolylâ^'N-Heterocyclic Carbene (NNC) Ligand and Their Catalytic Activity in the Transfer Hydrogenation of Ketones. Organometallics, 2008, 27, 6025-6028.	2.3	89
84	Exceptionally Efficient Unsymmetrical Ruthenium(II) NNN Complex Catalysts Bearing a Pyridyl-Based Pyrazolylâ^'Imidazolyl Ligand for Transfer Hydrogenation of Ketones. Organometallics, 2008, 27, 2898-2901.	2.3	86
85	Rhodium-Catalyzed Regioselective Câ^'H Functionalization via Decarbonylation of Acid Chlorides and Câ^'H Bond Activation under Phosphine-Free Conditions. Journal of the American Chemical Society, 2008, 130, 8136-8137.	13.7	184
86	Novel BrÃ,nsted Acid Catalyzed Three-Component Alkylations of Indoles with <i>N</i> -Phenylselenophthalimide and Styrenes. Organic Letters, 2007, 9, 5263-5266.	4.6	64
87	Pyridyl-Supported Pyrazolylâ^'N-Heterocyclic Carbene Ligands and the Catalytic Activity of Their Palladium Complexes in Suzukiâ^'Miyaura Reactions. Journal of Organic Chemistry, 2006, 71, 5274-5281.	3.2	91
88	Proazaphosphatrane P(RNCH2CH2)3N (R=Me,i-Pr)-Catalyzed Isomerization of Allylaromatics, Allyl Phenyl Sulfide, Allyl Phenyl Sulfone, andbis-Allylmethylene Double Bond-Containing Compounds. Advanced Synthesis and Catalysis, 2006, 348, 111-117.	4.3	11
89	Highly Efficient Route to Diselenides from the Reactions of Imines and Selenium in the Presence of Carbon Monoxide and Water. Advanced Synthesis and Catalysis, 2005, 347, 877-882.	4.3	13
90	Catalytic Dimerization of Allyl Phenyl Sulfone in the Presence of a Proazaphosphatrane Catalyst. Advanced Synthesis and Catalysis, 2004, 346, 539-541.	4.3	2

#	Article	IF	CITATIONS
91	Selenium-Catalyzed Carbonylation of Nitroarenes to Symmetrical 1,3-Diarylureas under Atmospheric Pressure. Advanced Synthesis and Catalysis, 2004, 346, 929-932.	4.3	30
92	N-Arylamides from Selenium-Catalyzed Reactions of Nitroaromatics and Amides in the Presence of Carbon Monoxide and Mixed Organic Bases. Advanced Synthesis and Catalysis, 2004, 346, 1267-1270.	4.3	21
93	REDUCTIVE DESULFURIZATION OF ORGANOSULFUR COMPOUNDS WITH SODIUM IN LIQUID AMMONIA. Phosphorus, Sulfur and Silicon and the Related Elements, 1998, 133, 79-82.	1.6	10

Catalytic behaviors and gas permeation properties of palladium-containing phenophthalein poly(ether) Tj ETQq0 0 0 rgBT /Overlock 10 T

95	Structures and relationship between the119SnNMR chemical shifts and pKa of their parent acids in organotin (I?) carboxylates. Heteroatom Chemistry, 1996, 7, 3-8.	0.7	2
96	The reaction of diphenyltin (IV) or triphenyltin (IV) chloride with 3,4,5-trimethoxybenzoyl salicylahydrazone. The crystal structure of Ph2[(MeO)3C6H2C(O)N2CHC6H4O]Sn. Heteroatom Chemistry, 1995, 6, 513-517.	0.7	1