Shiv Pillai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7136099/publications.pdf

Version: 2024-02-01

53794 37204 10,010 115 45 96 citations h-index g-index papers 197 197 197 12430 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Abatacept in IgG4-related disease: a prospective, open-label, single-arm, single-centre, proof-of-concept study. Lancet Rheumatology, The, 2022, 4, e105-e112.	3.9	16
2	T $<$ sub $>$ H $<$ /sub $>$ 17 cells in multiple sclerosis dislodge another brick in the wall. Science Immunology, 2022, 7, eabo2989.	11.9	0
3	Temporal changes in T cell subsets and expansion of cytotoxic CD4+ T cells in the lungs in severe COVID-19. Clinical Immunology, 2022, 237, 108991.	3.2	36
4	Response to Severe Acute Respiratory Syndrome Coronavirus 2 Initial Series and Additional Dose Vaccine in Patients With Predominant Antibody Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1622-1634.e4.	3.8	12
5	SARS-CoV-2 vaccination washes away original antigenic sin. Trends in Immunology, 2022, 43, 271-273.	6.8	17
6	SARS-CoV-2 epitope–specific CD4 ⁺ memory T cell responses across COVID-19 disease severity and antibody durability. Science Immunology, 2022, 7, .	11.9	25
7	Distinct disease-specific Tfh cell populations in 2 different fibrotic diseases: IgG4-related disease and Kimura disease. Journal of Allergy and Clinical Immunology, 2022, 150, 440-455.e17.	2.9	22
8	CD4+ and CD8+ cytotoxic T lymphocytes may induce mesenchymal cell apoptosis in IgG4-related disease. Journal of Allergy and Clinical Immunology, 2021, 147, 368-382.	2.9	53
9	CD4+CTLs in Fibrosing Mediastinitis Linked to <i>Histoplasma capsulatum</i> . Journal of Immunology, 2021, 206, 524-530.	0.8	17
10	Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis. Genome Medicine, 2021, 13, 35.	8.2	26
11	B1a and B2 cells are characterized by distinct CpG modification states at DNMT3A-maintained enhancers. Nature Communications, 2021, 12, 2208.	12.8	14
12	Treating life-threatening TAFRO syndrome with interleukin-1 inhibition. European Journal of Internal Medicine, 2021, 87, 121-123.	2.2	3
13	Idiopathic pulmonary fibrosis and systemic sclerosis: pathogenic mechanisms and therapeutic interventions. Cellular and Molecular Life Sciences, 2021, 78, 5527-5542.	5.4	22
14	Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. Journal of Clinical Investigation, 2021, 131, .	8.2	170
15	Innate-like self-reactive B cells infiltrate human renal allografts during transplant rejection. Nature Communications, 2021, 12, 4372.	12.8	34
16	Lymphocyte subset abnormalities in early diffuse cutaneous systemic sclerosis. Arthritis Research and Therapy, 2021, 23, 10.	3.5	18
17	Mer tyrosine kinase â€, as a possible link between resolution of inflammation and tissue fibrosis in IgG4-related disease . Rheumatology, 2021, 60, 4929-4941.	1.9	10
18	Sub-optimal Humoral immunity in SARS CoV-2 infection and viral variant generation. Clinics in Laboratory Medicine, 2021, 42, 75-84.	1.4	1

#	Article	IF	CITATIONS
19	B lymphocytes directly contribute to tissue fibrosis in patients with IgG4-related disease. Journal of Allergy and Clinical Immunology, 2020, 145, 968-981.e14.	2.9	85
20	Disease Severity Linked to Increase in Autoantibody Diversity in IgG4â€Related Disease. Arthritis and Rheumatology, 2020, 72, 687-693.	5.6	38
21	DOCK2 Sets the Threshold for Entry into the Virtual Memory CD8+ T Cell Compartment by Negatively Regulating Tonic TCR Triggering. Journal of Immunology, 2020, 204, 49-57.	0.8	9
22	Immune mechanisms of fibrosis and inflammation in IgG4-related disease. Current Opinion in Rheumatology, 2020, 32, 146-151.	4.3	31
23	Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell, 2020, 183, 143-157.e13.	28.9	599
24	B lymphocytes contribute to stromal reaction in pancreatic ductal adenocarcinoma. Oncolmmunology, 2020, 9, 1794359.	4.6	25
25	Systemic sclerosis and the COVID-19 pandemic: World Scleroderma Foundation preliminary advice for patient management. Annals of the Rheumatic Diseases, 2020, 79, 724-726.	0.9	51
26	Reply. Arthritis and Rheumatology, 2020, 72, 1585-1586.	5.6	0
27	SnapShot: COVID-19. Cell, 2020, 181, 954-954.e1.	28.9	106
28	The (inner) world according to GARP: Genetic susceptibility and regulatory T cells. Science Immunology, 2020, 5, .	11.9	1
29	Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. Journal of Clinical Investigation, 2020, 130, 2451-2464.	8.2	106
30	The Loss of Bcl-6 Expressing T Follicular Helper Cells and the Absence of Germinal Centers in COVID-19. SSRN Electronic Journal, 2020, , 3652322.	0.4	20
31	Winning with the B team?. Science Immunology, 2020, 5, .	11.9	0
32	Identification of galectin-3 as an autoantigen in patients with IgG4-related disease. Journal of Allergy	2.9	123
	and Clinical Immunology, 2019, 143, 736-745.e6.	2.7	120
33	and Clinical Immunology, 2019, 143, 736-745.e6. 9-O-acetyl sialic acid levels identify committed progenitors of plasmacytoid dendritic cells. Glycobiology, 2019, 29, 861-875.	2.5	1
33	9-O-acetyl sialic acid levels identify committed progenitors of plasmacytoid dendritic cells.		
	9-O-acetyl sialic acid levels identify committed progenitors of plasmacytoid dendritic cells. Glycobiology, 2019, 29, 861-875. Induction of metabolic quiescence defines the transitional to follicular B cell switch. Science	2.5	1

#	Article	IF	CITATIONS
37	Alterations in sialic-acid <i>O</i> -acetylation glycoforms during murine erythrocyte development. Glycobiology, 2019, 29, 222-228.	2.5	11
38	Luring T cells into a gray area. Science Immunology, 2019, 4, .	11.9	0
39	Sugar Mommy. Science Immunology, 2019, 4, .	11.9	1
40	A <scp>CD</scp> 8αâ^² Subset of <scp>CD</scp> 4+ <scp>SLAMF</scp> 7+ Cytotoxic T Cells Is Expanded in Patients With IgG4â€Related Disease and Decreases Following Glucocorticoid Treatment. Arthritis and Rheumatology, 2018, 70, 1133-1143.	5 . 6	87
41	High-Frequency, Functional HIV-Specific T-Follicular Helper and Regulatory Cells Are Present Within Germinal Centers in Children but Not Adults. Frontiers in Immunology, 2018, 9, 1975.	4.8	29
42	The Mst1 Kinase Is Required for Follicular B Cell Homing and B-1 B Cell Development. Frontiers in Immunology, 2018, 9, 2393.	4.8	13
43	The expansion in lymphoid organs of IL-4 ⁺ BATF ⁺ T follicular helper cells is linked to IgG4 class switching in vivo. Life Science Alliance, 2018, 1, e201800050.	2.8	58
44	Getting with the program in type 1 diabetes mellitus. Science Immunology, 2018, 3, .	11.9	0
45	The right angle on IL-2 therapy. Science Immunology, 2018, 3, .	11.9	0
46	Young and restless killer T cells keep infections at bay. Science Immunology, 2018, 3, .	11.9	0
47	The depth of mutational agony and the exuberance of tumoral T cell ecstasy predict checkpoint salvation. Science Immunology, $2018, 3, \ldots$	11.9	0
48	Clonally expanded cytotoxic CD4 ⁺ T cells and the pathogenesis of IgG4-related disease. Autoimmunity, 2017, 50, 19-24.	2.6	91
49	Viewing Siglecs through the lens of tumor immunology. Immunological Reviews, 2017, 276, 178-191.	6.0	115
50	Emerging Treatment Models in Rheumatology: IgG4â€Related Disease: Insights Into Human Immunology and Targeted Therapies. Arthritis and Rheumatology, 2017, 69, 1722-1732.	5.6	46
51	Editorial: Cytotoxic CD4+ T Cells in Viral Infections. Frontiers in Immunology, 2017, 8, 1729.	4.8	9
52	lgG4-Related Disease. , 2017, , 2026-2036.		1
53	Nurture trumps nature!. Science Immunology, 2017, 2, .	11.9	0
54	Turning Charon around on the Styx?. Science Immunology, 2017, 2, .	11.9	0

#	Article	IF	CITATIONS
55	JAKing up resistance to immunotherapy. Science Immunology, 2017, 2, .	11.9	1
56	Sialic acids and autoimmune disease. Immunological Reviews, 2016, 269, 145-161.	6.0	77
57	B Lymphocytes and Cancer: A Love–Hate Relationship. Trends in Cancer, 2016, 2, 747-757.	7.4	284
58	Striking Immune Phenotypes in Gene-Targeted Mice Are Driven by a Copy-Number Variant Originating from a Commercially Available C57BL/6 Strain. Cell Reports, 2016, 15, 1901-1909.	6.4	65
59	Clonal expansion of CD4+ cytotoxic T lymphocytes in patients with IgG4-related disease. Journal of Allergy and Clinical Immunology, 2016, 138, 825-838.	2.9	306
60	Predictors of disease relapse in IgG4-related disease following rituximab. Rheumatology, 2016, 55, 1000-1008.	1.9	151
61	Integrating Current Thinking on Peripheral B-Cell Tolerance in Lupus. , 2016, , 121-126.		1
62	Marginal Zone B Cell Development. , 2016, , 100-104.		0
63	lgG4â€Related Disease: Clinical and Laboratory Features in One Hundred Twentyâ€Five Patients. Arthritis and Rheumatology, 2015, 67, 2466-2475.	5.6	463
64	Impaired receptor editing and heterozygous RAG2 mutation in a patient with systemic lupus erythematosus and erosive arthritis. Journal of Allergy and Clinical Immunology, 2015, 135, 272-273.	2.9	30
65	B-cell depletion attenuates serological biomarkers of fibrosis and myofibroblast activation in IgG4-related disease. Annals of the Rheumatic Diseases, 2015, 74, 2236-2243.	0.9	120
66	Hypoxia drives transient site-specific copy gain and drug-resistant gene expression. Genes and Development, 2015, 29, 1018-1031.	5.9	72
67	lgG4-related disease. Lancet, The, 2015, 385, 1460-1471.	13.7	975
68	Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Annals of the Rheumatic Diseases, 2015, 74, 190-195.	0.9	409
69	IgG Glycosylation Is Programmed and Remembered after Immunization with TLR Stimulating Adjuvants. AIDS Research and Human Retroviruses, 2014, 30, A65-A65.	1.1	2
70	Prevalence of atopy, eosinophilia, and IgE elevation in IgG4-related disease. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 269-272.	5.7	240
71	lκB Kinase β (IKBKB) Mutations in Lymphomas That Constitutively Activate Canonical Nuclear Factor κB (NFκB) Signaling. Journal of Biological Chemistry, 2014, 289, 26960-26972.	3.4	20
72	IgG4-related midline destructive lesion. Annals of the Rheumatic Diseases, 2014, 73, 1434-1436.	0.9	43

#	Article	IF	Citations
73	De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. Journal of Allergy and Clinical Immunology, 2014, 134, 679-687.	2.9	302
74	B Cell Tolerance. , 2014, , 160-162.		0
75	Inhibition of Phosphorylation of ERK in CLL Cells Pre-Treatment Correlates Best with Response to Dasatinib, Fludarabine, and Rituximab for Patients with Relapsed CLL. Blood, 2014, 124, 3636-3636.	1.4	18
76	Rethinking mechanisms of autoimmune pathogenesis. Journal of Autoimmunity, 2013, 45, 97-103.	6.5	67
77	M89V Sialic Acid Acetyl Esterase (SIAE) and All Other Non-Synonymous Common Variants of This Gene Are Catalytically Normal. PLoS ONE, 2013, 8, e53453.	2.5	15
78	Inhibition Of Lyn and Syk By Treatment With Dasatinib, Fludarabine, and Rituximab Correlates With Apoptosis and Clinical Response In Patients With Relapsed CLL. Blood, 2013, 122, 5300-5300.	1.4	0
79	Siglecs and Immune Regulation. Annual Review of Immunology, 2012, 30, 357-392.	21.8	306
80	B cells and autoimmunity. Current Opinion in Immunology, 2011, 23, 721-731.	5.5	103
81	Now you know your ABCs. Blood, 2011, 118, 1187-1188.	1.4	6
82	Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature, 2010, 466, 243-247.	27.8	150
83	B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9- <i>O</i> -acetyl sialic acid esterase. Journal of Experimental Medicine, 2009, 206, 125-138.	8.5	116
84	The bone marrow perisinusoidal niche for recirculating B cells and the positive selection of bone marrowâ€derived B lymphocytes. Immunology and Cell Biology, 2009, 87, 16-19.	2.3	24
85	The follicular versus marginal zone B lymphocyte cell fate decision. Nature Reviews Immunology, 2009, 9, 767-777.	22.7	446
86	Esterases and autoimmunity: the sialic acid acetylesterase pathway and the regulation of peripheral B cell tolerance. Trends in Immunology, 2009, 30, 488-493.	6.8	43
87	Peripheral B cell subsets. Current Opinion in Immunology, 2008, 20, 149-157.	5.5	450
88	lg Knock-In Mice Producing Anti-Carbohydrate Antibodies: Breakthrough of B Cells Producing Low Affinity Anti-Self Antibodies. Journal of Immunology, 2008, 180, 3839-3848.	0.8	15
89	NK T cells provide lipid antigen-specific cognate help for B cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8339-8344.	7.1	205
90	A unique B2 B cell subset in the intestine. Journal of Experimental Medicine, 2008, 205, 1343-1355.	8.5	39

#	Article	IF	Citations
91	The Recirculating B Cell Pool Contains Two Functionally Distinct, Long-Lived, Posttransitional, Follicular B Cell Populations. Journal of Immunology, 2007, 179, 2270-2281.	0.8	7 9
92	Synergism between NF-κB1/p50 and Notch2 during the Development of Marginal Zone B Lymphocytes. Journal of Immunology, 2007, 179, 195-200.	0.8	68
93	Naive recirculating B cells mature simultaneously in the spleen and bone marrow. Blood, 2007, 109, 2339-2345.	1.4	94
94	Protein kinase C-associated kinase is not required for the development of peripheral B lymphocyte populations. Molecular Immunology, 2006, 43, 1694-1699.	2.2	3
95	The CD9 Tetraspanin Is Not Required for the Development of Peripheral B Cells or for Humoral Immunity. Journal of Immunology, 2005, 175, 2925-2930.	0.8	33
96	MARGINAL ZONE B CELLS. Annual Review of Immunology, 2005, 23, 161-196.	21.8	421
97	Two Lymphoid Roads Divergeâ€" but Does Antigen Bade B Cells to Take the Road Less Traveled?. Immunity, 2005, 23, 242-244.	14.3	12
98	Perisinusoidal B Cells in the Bone Marrow Participate in T-Independent Responses to Blood-Borne Microbes. Immunity, 2005, 23, 397-407.	14.3	110
99	Birth pangs: the stressful origins of lymphocytes. Journal of Clinical Investigation, 2005, 115, 224-227.	8.2	14
100	Positive selection and lineage commitment during peripheral B-lymphocyte development. Immunological Reviews, 2004, 197, 206-218.	6.0	107
101	A mastermind revealed. Blood, 2004, 104, 1593-1593.	1.4	1
102	A Catalytically Inactive Form of Protein Kinase C-Associated Kinase/Receptor Interacting Protein 4, a Protein Kinase Cβ-Associated Kinase That Mediates NF-ΪB Activation, Interferes with Early B Cell Development. Journal of Immunology, 2003, 171, 1875-1880.	0.8	21
103	Protein Kinase C-associated Kinase Can Activate NFκB in Both a Kinase-dependent and a Kinase-independent Manner. Journal of Biological Chemistry, 2003, 278, 21526-21533.	3.4	30
104	Defective proliferative responses in B lymphocytes and thymocytes that lack neurofibromin. Molecular Immunology, 2002, 38, 701-708.	2.2	25
105	Tec kinase pathways in lymphocyte development and transformation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2002, 1602, 162-167.	7.4	10
106	Antigen-dependent B-cell development. Current Opinion in Immunology, 2002, 14, 241-249.	5.5	106
107	The Follicular versus Marginal Zone B Lymphocyte Cell Fate Decision Is Regulated by Aiolos, Btk, and CD21. Immunity, 2001, 14, 603-615.	14.3	320
108	Protein Kinase C-associated Kinase (PKK), a Novel Membrane-associated, Ankyrin Repeat-containing Protein Kinase. Journal of Biological Chemistry, 2001, 276, 21737-21744.	3.4	57

SHIV PILLAI

#	Article	IF	CITATIONS
109	Nuclear Factor Î ^o b Is Required for the Development of Marginal Zone B Lymphocytes. Journal of Experimental Medicine, 2000, 192, 1175-1182.	8.5	151
110	Accelerated Proteasomal Degradation of Membrane Ig Heavy Chains. Journal of Immunology, 2000, 164, 4713-4719.	0.8	13
111	The Chosen Few? Positive Selection and the Generation of Naive B Lymphocytes. Immunity, 1999, 10, 493-502.	14.3	99
112	Regulation of Nuclear Localization and Transcriptional Activity of TFII-I by Bruton's Tyrosine Kinase. Molecular and Cellular Biology, 1999, 19, 5014-5024.	2.3	100
113	Aiolos Regulates B Cell Activation and Maturation to Effector State. Immunity, 1998, 9, 543-553.	14.3	297
114	Complete nucleotide sequence of MHC class I alleles in the HT29 colon cancer cell line. Tissue Antigens, 1993, 42, 530-532.	1.0	0
115	Immunoglobulin Transport in B Cell Development. International Review of Cytology, 1991, 130, 1-36.	6.2	10