List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7134529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science, 1994, 266, 1024-1027.	6.0	1,080
2	A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. PLoS Pathogens, 2013, 9, e1003618.	2.1	835
3	Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1477-1483.	6.0	793
4	HIV vaccine design and the neutralizing antibody problem. Nature Immunology, 2004, 5, 233-236.	7.0	721
5	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	13.7	681
6	Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1484-1490.	6.0	662
7	Antibody Protects Macaques against Vaginal Challenge with a Pathogenic R5 Simian/Human Immunodeficiency Virus at Serum Levels Giving Complete Neutralization In Vitro. Journal of Virology, 2001, 75, 8340-8347.	1.5	649
8	The Mannose-Dependent Epitope for Neutralizing Antibody 2G12 on Human Immunodeficiency Virus Type 1 Glycoprotein gp120. Journal of Virology, 2002, 76, 7293-7305.	1.5	528
9	A Recombinant Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Complex Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits Is an Antigenic Mimic of the Trimeric Virion-Associated Structure. Journal of Virology, 2000, 74, 627-643.	1.5	503
10	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	6.0	482
11	Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nature Medicine, 2003, 9, 343-346.	15.2	453
12	The CCR5 and CXCR4 Coreceptors—Central to Understanding the Transmission and Pathogenesis of Human Immunodeficiency Virus Type 1 Infection. AIDS Research and Human Retroviruses, 2004, 20, 111-126.	0.5	441
13	Stabilization of the Soluble, Cleaved, Trimeric Form of the Envelope Glycoprotein Complex of Human Immunodeficiency Virus Type 1. Journal of Virology, 2002, 76, 8875-8889.	1.5	424
14	Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers. Immunity, 2014, 40, 657-668.	6.6	342
15	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	13.5	341
16	Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-17629.	3.3	324
17	Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 2014, 40, 669-680.	6.6	323
18	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nature Structural and Molecular Biology, 2013, 20, 796-803.	3.6	314

#	Article	IF	CITATIONS
19	Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6639-E6648.	3.3	286
20	Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nature Medicine, 2008, 14, 617-621.	15.2	266
21	V3: HIV's Switch-Hitter. AIDS Research and Human Retroviruses, 2005, 21, 171-189.	0.5	260
22	The entry of entry inhibitors: A fusion of science and medicine. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10598-10602.	3.3	259
23	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	2.9	250
24	A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B <i>env</i> Gene. Journal of Virology, 2015, 89, 3380-3395.	1.5	247
25	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	2.1	244
26	Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11181-11186.	3.3	243
27	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell, 2015, 161, 1505-1515.	13.5	239
28	Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4351-4356.	3.3	236
29	HIV-1 Antigen–specific and –nonspecific B Cell Responses Are Sensitive to Combination Antiretroviral Therapy. Journal of Experimental Medicine, 1998, 188, 233-245.	4.2	234
30	Nativeâ€like Env trimers as a platform for <scp>HIV</scp> â€1 vaccine design. Immunological Reviews, 2017, 275, 161-182.	2.8	221
31	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature, 2017, 547, 360-363.	13.7	217
32	HIV-1 Envelope Triggers Polyclonal Ig Class Switch Recombination through a CD40-Independent Mechanism Involving BAFF and C-Type Lectin Receptors. Journal of Immunology, 2006, 176, 3931-3941.	0.4	206
33	Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Clycans. Immunity, 2015, 43, 1053-1063.	6.6	200
34	SARS-CoV-2 Vaccines and the Growing Threat of Viral Variants. JAMA - Journal of the American Medical Association, 2021, 325, 821.	3.8	190
35	Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18256-18261.	3.3	188
36	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	2.9	171

#	Article	IF	CITATIONS
37	Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies. Cell, 2014, 159, 69-79.	13.5	161
38	New targets for inhibitors of HIV-1 replication. Nature Reviews Molecular Cell Biology, 2000, 1, 40-49.	16.1	158
39	Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12, 82.	0.9	156
40	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	4.2	151
41	Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. Cell Reports, 2016, 17, 2195-2209.	2.9	150
42	Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11440-11445.	3.3	149
43	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	5.8	149
44	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. Journal of Virology, 2015, 89, 10383-10398.	1.5	148
45	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	5.9	144
46	Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology, 2014, 11, 41.	0.9	139
47	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathogens, 2016, 12, e1005864.	2.1	138
48	HIV-1 gp120 Mannoses Induce Immunosuppressive Responses from Dendritic Cells. PLoS Pathogens, 2007, 3, e169.	2.1	135
49	Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Reports, 2015, 11, 1604-1613.	2.9	135
50	Enhancing the Proteolytic Maturation of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Journal of Virology, 2002, 76, 2606-2616.	1.5	133
51	Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nature Communications, 2015, 6, 6144.	5.8	130
52	Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11947-11952.	3.3	127
53	T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nature Medicine, 2020, 26, 932-940.	15.2	124
54	PUBLIC HEALTH: Enhanced: A Sound Rationale Needed for Phase III HIV-1 Vaccine Trials. Science, 2004, 303, 316-316.	6.0	123

#	Article	IF	CITATIONS
55	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	2.8	123
56	Site-Specific Clycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen. Cell Reports, 2018, 24, 1958-1966.e5.	2.9	120
57	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	5.8	116
58	Antibody Responses to SARS-CoV-2 mRNA Vaccines Are Detectable in Saliva. Pathogens and Immunity, 2021, 6, 116-134.	1.4	112
59	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathogens, 2018, 14, e1006913.	2.1	111
60	CD4-Induced Activation in a Soluble HIV-1 Env Trimer. Structure, 2014, 22, 974-984.	1.6	108
61	IgG Subclass Profiles in Infected HIV Type 1 Controllers and Chronic Progressors and in Uninfected Recipients of Env Vaccines. AIDS Research and Human Retroviruses, 2010, 26, 445-458.	0.5	107
62	Variable-Loop-Deleted Variants of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Can Be Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits. Journal of Virology, 2000, 74, 5091-5100.	1.5	106
63	Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer. PLoS Pathogens, 2015, 11, e1004767.	2.1	100
64	Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. Science Advances, 2021, 7, .	4.7	100
65	HIV-1 Envelope Trimer Design and Immunization Strategies To Induce Broadly Neutralizing Antibodies. Trends in Immunology, 2016, 37, 221-232.	2.9	96
66	Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2015, 89, 12189-12210.	1.5	88
67	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Communications, 2015, 6, 8167.	5.8	87
68	Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. Science Advances, 2021, 7, eabj5365.	4.7	83
69	A pièce de resistance: how HIV-1 escapes small molecule CCR5 inhibitors. Current Opinion in HIV and AIDS, 2009, 4, 118-124.	1.5	82
70	Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. ELife, 2020, 9, .	2.8	80
71	Is there enough gp120 in the body fluids of HIV-1-infected individuals to have biologically significant effects?. Virology, 2004, 323, 1-8.	1.1	79
72	COVID-19 Vaccines: "Warp Speed―Needs Mind Melds, Not Warped Minds. Journal of Virology, 2020, 94, .	1.5	79

#	Article	IF	CITATIONS
73	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. Journal of Virology, 2017, 91, .	1.5	77
74	Influences on Trimerization and Aggregation of Soluble, Cleaved HIV-1 SOSIP Envelope Glycoprotein. Journal of Virology, 2013, 87, 9873-9885.	1.5	76
75	cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIVâ€I envelope glycoprotein vaccine candidate. Biotechnology and Bioengineering, 2018, 115, 885-899.	1.7	75
76	Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. Journal of Virology, 2017, 91, .	1.5	73
77	Structural Characterization of Cleaved, Soluble HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2013, 87, 9865-9872.	1.5	71
78	Virus vaccines: proteins prefer prolines. Cell Host and Microbe, 2021, 29, 327-333.	5.1	70
79	Sensitive ELISA for the gp120 and gp160 Surface Glycoproteins of HIV-1. AIDS Research and Human Retroviruses, 1988, 4, 369-379.	0.5	69
80	How Can HIV-Type-1-Env Immunogenicity Be Improved to Facilitate Antibody-Based Vaccine Development?. AIDS Research and Human Retroviruses, 2012, 28, 1-15.	0.5	69
81	Structure of 2G12 Fab ₂ in Complex with Soluble and Fully Glycosylated HIV-1 Env by Negative-Stain Single-Particle Electron Microscopy. Journal of Virology, 2014, 88, 10177-10188.	1.5	67
82	Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and C, Given Individually, Sequentially, or in Combination. Journal of Virology, 2018, 92, .	1.5	66
83	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	1.5	66
84	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	2.1	61
85	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	1.5	57
86	Approaches for Optimal Use of Different COVID-19 Vaccines. JAMA - Journal of the American Medical Association, 2021, 325, 1251.	3.8	57
87	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	2.1	52
88	Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo. Virology, 2009, 389, 108-121.	1.1	50
89	Partial Enzymatic Deglycosylation Preserves the Structure of Cleaved Recombinant HIV-1 Envelope Glycoprotein Trimers. Journal of Biological Chemistry, 2012, 287, 24239-24254.	1.6	50
90	The Reactivities of HIV-1+Human Sera with Solid-Phase V3 Loop Peptides Can Be Poor Predictors of Their Reactivities with V3 Loops on Native gp120 Molecules. AIDS Research and Human Retroviruses, 1993, 9, 209-219.	0.5	49

#	Article	IF	CITATIONS
91	Stable 293ÂT and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies. Retrovirology, 2014, 11, 33.	0.9	46
92	A STEP into Darkness or Light?. Science, 2008, 320, 753-755.	6.0	45
93	Macaque studies of vaccine and microbicide combinations for preventing HIV-1 sexual transmission. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8694-8698.	3.3	44
94	A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo. PLoS Pathogens, 2015, 11, e1005238.	2.1	43
95	Binding of inferred germline precursors of broadly neutralizing HIV-1 antibodies to native-like envelope trimers. Virology, 2015, 486, 116-120.	1.1	42
96	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	5.1	42
97	Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens?. Cell Host and Microbe, 2020, 27, 507-518.	5.1	42
98	Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses. Journal of Virology, 2012, 86, 2488-2500.	1.5	40
99	Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. Journal of Biological Chemistry, 2018, 293, 1688-1701.	1.6	40
100	Urgently needed: a filter for the HIV-1 vaccine pipeline. Nature Medicine, 2004, 10, 769-771.	15.2	37
101	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	2.9	37
102	N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus. Virology, 2008, 372, 187-200.	1.1	36
103	Potent Induction of Antibody-Secreting B Cells by Human Dermal-Derived CD14+ Dendritic Cells Triggered by Dual TLR Ligation. Journal of Immunology, 2012, 189, 5729-5744.	0.4	36
104	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	5.8	35
105	Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. Journal of Virology, 2016, 90, 813-828.	1.5	34
106	Effects of Adjuvants on HIV-1 Envelope Glycoprotein SOSIP Trimers <i>In Vitro</i> . Journal of Virology, 2018, 92, .	1.5	34
107	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	2.9	33
108	Occluding the Mannose Moieties on Human Immunodeficiency Virus Type 1 gp120 with Griffithsin Improves the Antibody Responses to Both Proteins in Mice. AIDS Research and Human Retroviruses, 2012, 28, 206-214.	0.5	31

#	Article	IF	CITATIONS
109	Topical Microbicides Become Topical. New England Journal of Medicine, 2005, 352, 298-300.	13.9	30
110	Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. Nature Communications, 2019, 10, 763.	5.8	30
111	An Investigation of the High-Avidity Antibody Response to Glycoprotein 120 of Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 1997, 13, 1007-1015.	0.5	29
112	A stamp on the envelope. Nature, 2014, 514, 437-438.	13.7	29
113	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	1.5	29
114	Native Conformation and Canonical Disulfide Bond Formation Are Interlinked Properties of HIV-1 Env Glycoproteins. Journal of Virology, 2016, 90, 2884-2894.	1.5	28
115	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathogens, 2018, 14, e1006986.	2.1	28
116	Improving the Expression and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers by Targeted Sequence Changes. Journal of Virology, 2017, 91, .	1.5	27
117	HIV-1 gp120 Impairs the Induction of B Cell Responses by TLR9-Activated Plasmacytoid Dendritic Cells. Journal of Immunology, 2012, 189, 5257-5265.	0.4	26
118	Convalescent plasma-mediated resolution of COVID-19 in a patient with humoral immunodeficiency. Cell Reports Medicine, 2021, 2, 100164.	3.3	26
119	What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure?. Journal of Virology, 2015, 89, 5981-5995.	1.5	25
120	Preventing HIV-1 sexual transmissionnot sexy enough science, or no benefit to the bottom line?. Journal of Antimicrobial Chemotherapy, 2003, 52, 890-892.	1.3	24
121	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	1.8	23
122	Env-glycoprotein heterogeneity as a source of apparent synergy and enhanced cooperativity in in inhibition of HIV-1 infection by neutralizing antibodies and entry inhibitors. Virology, 2012, 422, 22-36.	1.1	22
123	High-Throughput Protein Engineering Improves the Antigenicity and Stability of Soluble HIV-1 Envelope Glycoprotein SOSIP Trimers. Journal of Virology, 2017, 91, .	1.5	22
124	Postconvalescent SARS-CoV-2 IgG and Neutralizing Antibodies are Elevated in Individuals with Poor Metabolic Health. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2025-e2034.	1.8	22
125	Testing-on-a-probe biosensors reveal association of early SARS-CoV-2 total antibodies and surrogate neutralizing antibodies with mortality in COVID-19 patients. Biosensors and Bioelectronics, 2021, 178, 113008.	5.3	21
126	HIV Type 1 Molecular Clones Able to Use the Bonzo/STRL-33 Coreceptor for Virus Entry. AIDS Research and Human Retroviruses, 2001, 17, 217-227.	0.5	18

#	Article	IF	CITATIONS
127	Optimizing the production and affinity purification of HIV-1 envelope glycoprotein SOSIP trimers from transiently transfected CHO cells. PLoS ONE, 2019, 14, e0215106.	1.1	18
128	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	2.1	18
129	HIV-1 Pathogenesis: The Complexities of the CCR5-CCL3L1 Complex. Cell Host and Microbe, 2007, 2, 281-283.	5.1	17
130	Developability Assessment of Physicochemical Properties and Stability Profiles of HIV-1 BG505 SOSIP.664 and BG505 SOSIP.v4.1-GT1.1 gp140 Envelope Glycoprotein Trimers as Candidate Vaccine Antigens. Journal of Pharmaceutical Sciences, 2019, 108, 2264-2277.	1.6	16
131	Stabilization of the V2 loop improves the presentation of V2 loop–associated broadly neutralizing antibody epitopes on HIV-1 envelope trimers. Journal of Biological Chemistry, 2019, 294, 5616-5631.	1.6	16
132	HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. PLoS ONE, 2017, 12, e0181886.	1.1	16
133	Structural dynamics reveal isolate-specific differences at neutralization epitopes on HIV Env. IScience, 2022, 25, 104449.	1.9	16
134	Which gplGO vaccine?. Nature, 1993, 361, 503-503.	13.7	15
135	High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. ELife, 2021, 10, .	2.8	15
136	Short Communication: Virion Aggregation by Neutralizing and Nonneutralizing Antibodies to the HIV-1 Envelope Glycoprotein. AIDS Research and Human Retroviruses, 2015, 31, 1160-1165.	0.5	14
137	Good CoP, bad CoP? Interrogating the immune responses to primate lentiviral vaccines. Retrovirology, 2012, 9, 80.	0.9	13
138	Clinical Adjuvant Combinations Stimulate Potent B-Cell Responses In Vitro by Activating Dermal Dendritic Cells. PLoS ONE, 2013, 8, e63785.	1.1	13
139	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	1.5	13
140	Antibody Responses Elicited by Immunization with BG505 Trimer Immune Complexes. Journal of Virology, 2019, 93, .	1.5	12
141	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	1.5	11
142	HIV tropism. Nature, 1993, 361, 309-310.	13.7	9
143	AIDS vaccines: On the trail of two trials. Nature, 2002, 415, 365-366.	13.7	9
144	HIV-1 Env antibodies: are we in a bind or going blind?. Nature Medicine, 2012, 18, 346-347.	15.2	8

#	Article	IF	CITATIONS
145	Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers. Npj Vaccines, 2021, 6, 103.	2.9	8
146	Recognition of HIV-inactivating peptide triazoles by the recombinant soluble Env trimer, BG505 SOSIP.664. Proteins: Structure, Function and Bioinformatics, 2017, 85, 843-851.	1.5	7
147	Journals, do your own formatting. Nature, 2017, 542, 31-31.	13.7	7
148	Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses. Journal of Virology, 2022, , e0003422.	1.5	7
149	SOS and IP Modifications Predominantly Affect the Yield but Not Other Properties of SOSIP.664 HIV-1 Env Glycoprotein Trimers. Journal of Virology, 2019, 94, .	1.5	4
150	A Recombinant HIV Envelope Trimer Selects for Quaternary Dependent Antibodies Targeting the Trimer Apex. AIDS Research and Human Retroviruses, 2014, 30, A7-A8.	0.5	3
151	Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody. Cell Reports Medicine, 2022, 3, 100635.	3.3	3
152	Properties of an HIV 'Vaccine'. Nature, 1993, 362, 505-506.	13.7	2
153	Native-like BG505 SOSIP.664 Trimers Induce Autologous Tier-2 NAbs against Complex Epitopes in Rabbits and Macaques. AIDS Research and Human Retroviruses, 2014, 30, A67-A67.	0.5	2
154	Refocussing Antibody Responses by Chemical Modification of Vaccine Antigens. AIDS Research and Human Retroviruses, 2014, 30, A66-A67.	0.5	0
155	Beta testing the monkey model. Nature Immunology, 2021, 22, 1201-1203.	7.0	0
156	Title is missing!. , 2020, 16, e1008665.		0
157	Title is missing!. , 2020, 16, e1008665.		0
158	Title is missing!. , 2020, 16, e1008665.		0
159	Title is missing!. , 2020, 16, e1008665.		0
160	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
161	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
162	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0

#	Article	IF	CITATIONS
163	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0